首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A graph G is said to be hyper-connected if the removal of every minimum cut creates exactly two connected components, one of which is an isolated vertex. In this paper, we first generalize the concept of hyper-connected graphs to that of semi-hyper-connected graphs: a graph G is called semi-hyper-connected if the removal of every minimum cut of G creates exactly two components. Then we characterize semi-hyper-connected edge transitive graphs.  相似文献   

2.
It is shown that every connected vertex and edge transitive graph has a normal multicover that is a connected normal edge transitive Cayley graph. Moreover, every chiral or regular map has a normal cover that is a balanced chiral or regular Cayley map, respectively. As an application, a new family of half-transitive graphs is constructed as 2-fold covers of a family of 2-arc transitive graphs admitting Suzuki groups.  相似文献   

3.
A graph G is said to be semi-hyper-connected if the removal of every minimum cut of G creates exactly two connected components. In this paper, we characterize semi-hyper-connected vertex transitive graphs, in particular Cayley graphs.  相似文献   

4.
We present a new family of locally geodesic transitive graphs with arbitrarily large diameter and valencies, containing a particular case to be geodesic transitive. We also prove that it is a unique family in some generalised family of graphs.  相似文献   

5.
We give a unified approach to analyzing, for each positive integer s, a class of finite connected graphs that contains all the distance transitive graphs as well as the locally s‐arc transitive graphs of diameter at least s. A graph is in the class if it is connected and if, for each vertex v, the subgroup of automorphisms fixing v acts transitively on the set of vertices at distance i from v, for each i from 1 to s. We prove that this class is closed under forming normal quotients. Several graphs in the class are designated as degenerate, and a nondegenerate graph in the class is called basic if all its nontrivial normal quotients are degenerate. We prove that, for s≥2, a nondegenerate, nonbasic graph in the class is either a complete multipartite graph or a normal cover of a basic graph. We prove further that, apart from the complete bipartite graphs, each basic graph admits a faithful quasiprimitive action on each of its (1 or 2) vertex‐orbits or a biquasiprimitive action. These results invite detailed additional analysis of the basic graphs using the theory of quasiprimitive permutation groups. © 2011 Wiley Periodicals, Inc. J Graph Theory 69:176‐197, 2012  相似文献   

6.
Given natural numbers n?3 and 1?a, r?n?1, the rose window graph Rn(a, r) is a quartic graph with vertex set $\{{{x}}_{{i}}|{{i}}\in {\mathbb{Z}}_{{n}}\} \cup \{{{y}}_{{i}}|{{i}}\in{\mathbb{Z}}_{{n}}\}Given natural numbers n?3 and 1?a, r?n?1, the rose window graph Rn(a, r) is a quartic graph with vertex set $\{{{x}}_{{i}}|{{i}}\in {\mathbb{Z}}_{{n}}\} \cup \{{{y}}_{{i}}|{{i}}\in{\mathbb{Z}}_{{n}}\}$ and edge set $\{\{{{x}}_{{i}},{{x}}_{{{i+1}}}\} \mid {{i}}\in {\mathbb{Z}}_n \} \cup \{\{{{y}}_{{{i}}},{{y}}_{{{i+r}}}\}\mid {{i}} \in{\mathbb{Z}}_{{n}}\}\cup \{\{{{x}}_{{{i}}},{{y}}_{{{i}}}\} \mid {{i}}\in {\mathbb{Z}}_{{{n}}}\}\cup \{\{{{x}}_{{{i+a}}},{{y}}_{{{i}}}\} \mid{{i}} \in {\mathbb{Z}}_{{{n}}}\}$. In this article a complete classification of edge‐transitive rose window graphs is given, thus solving one of the three open problems about these graphs posed by Steve Wilson in 2001. © 2010 Wiley Periodicals, Inc. J Graph Theory 65: 216–231, 2010  相似文献   

7.
In this paper, we first consider graphs allowing symmetry groups which act transitively on edges but not on darts (directed edges). We see that there are two ways in which this can happen and we introduce the terms bi‐transitive and semi‐transitive to describe them. We examine the elementary implications of each condition and consider families of examples; primary among these are the semi‐transitive spider‐graphs PS(k,N;r) and MPS(k,N;r). We show how a product operation can be used to produce larger graphs of each type from smaller ones. We introduce the alternet of a directed graph. This links the two conditions, for each alternet of a semi‐transitive graph (if it has more than one) is a bi‐transitive graph. We show how the alternets can be used to understand the structure of a semi‐transitive graph, and that the action of the group on the set of alternets can be an interesting structure in its own right. We use alternets to define the attachment number of the graph, and the important special cases of tightly attached and loosely attached graphs. In the case of tightly attached graphs, we show an addressing scheme to describe the graph with coordinates. Finally, we use the addressing scheme to complete the classification of tightly attached semi‐transitive graphs of degree 4 begun by Marus?ic? and Praeger. This classification shows that nearly all such graphs are spider‐graphs. © 2003 Wiley Periodicals, Inc. J Graph Theory 45: 1–27, 2004  相似文献   

8.
Let G be a k-regular vertex transitive graph with connectivity κ(G)=k and let mk(G) be the number of vertex cuts with k vertices. Define m(n,k)=min{mk(G): GTn,k}, where Tn,k denotes the set of all k-regular vertex transitive graphs on n vertices with κ(G)=k. In this paper, we determine the exact values of m(n,k).  相似文献   

9.
2-弧传递图是对称图类的一个重要的子类,而拟本原和双拟本原的2-弧传递图在2-弧传递图的研究中具有最基本的意义.文中对阶为kp^m(k,p是素数,k≠p,m≥2是整数)的基本2-孤传递图进行了研究。获得了下列结果:(1)kp^m阶G-拟本原的2-弧传递图是几乎单的.(2)对2p^m阶和2^mk阶双拟本原的2-弧传递图的分类进行了刻划,确定了其自同构群的基柱.  相似文献   

10.
The edge Szeged and edge Wiener indices of graphs are new topological indices presented very recently. It is not difficult to apply a modification of the well-known cut method to compute the edge Szeged and edge Wiener indices of hexagonal systems. The aim of this paper is to propose a method for computing these indices for general graphs under some additional assumptions.  相似文献   

11.
We characterize the automorphism groups of quasiprimitive 2-arc-transitive graphs of twisted wreath product type. This is a partial solution for a problem of Praeger regarding quasiprimitive 2-arc transitive graphs. The solution stimulates several further research problems regarding automorphism groups of edge-transitive Cayley graphs and digraphs. This work forms part of an ARC grant project and is supported by a QEII Fellowship.  相似文献   

12.
An infinite family of cubic edge‐transitive but not vertex‐transitive graphs with edge stabilizer isomorphic to ℤ2 is constructed. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 152–160, 2000  相似文献   

13.
A graph is vertex?transitive or symmetric if its automorphism group acts transitively on vertices or ordered adjacent pairs of vertices of the graph, respectively. Let G be a finite group and S a subset of G such that 1?S and S={s?1 | sS}. The Cayleygraph Cay(G, S) on G with respect to S is defined as the graph with vertex set G and edge set {{g, sg} | gG, sS}. Feng and Kwak [J Combin Theory B 97 (2007), 627–646; J Austral Math Soc 81 (2006), 153–164] classified all cubic symmetric graphs of order 4p or 2p2 and in this article we classify all cubic symmetric graphs of order 2pq, where p and q are distinct odd primes. Furthermore, a classification of all cubic vertex‐transitive non‐Cayley graphs of order 2pq, which were investigated extensively in the literature, is given. As a result, among others, a classification of cubic vertex‐transitive graphs of order 2pq can be deduced. © 2010 Wiley Periodicals, Inc. J Graph Theory 65: 285–302, 2010  相似文献   

14.
A graph is vertex‐transitive if its automorphism group acts transitively on vertices of the graph. A vertex‐transitive graph is a Cayley graph if its automorphism group contains a subgroup acting regularly on its vertices. In this article, the tetravalent vertex‐transitive non‐Cayley graphs of order 4p are classified for each prime p. As a result, there are one sporadic and five infinite families of such graphs, of which the sporadic one has order 20, and one infinite family exists for every prime p>3, two families exist if and only if p≡1 (mod 8) and the other two families exist if and only if p≡1 (mod 4). For each family there is a unique graph for a given order. © 2011 Wiley Periodicals, Inc.  相似文献   

15.
A graph X is said to be ½‐transitive if its automorphism group Aut X acts vertex‐ and edge‐, but not arc‐transitively on X. Then Aut X induces an orientation of the edges of X. If X has valency 4, then this orientation gives rise to so‐called alternating cycles, that is even length cycles in X whose every other vertex is the head and every other vertex is the tail of its two incident edges in the above orientation. All alternating cycles have the same length 2r(X), where r(X) is the radius of X, and any two adjacent alternating cycles intersect in the same number of vertices, called the attachment number a(X) of X. All known examples of ½‐transitive graphs have attachment number 1, r or 2r, where r is the radius of the graph. In this article, we construct ½‐transitive graphs with all other possible attachment numbers. The case of attachment number 2 is dealt with in more detail. © 2000 John Wiley & Sons, Inc. J Graph Theory 34: 89–99, 2000  相似文献   

16.
17.
In the author's Ph. D thesis, a non-quasiprimitive graph admitting a quasiprimitive automorphism group isomorphic to J1 was constructed ,where J1 is Janko simple group of order 175560. Is this the only one for J1? In this paper all primitive (J1,2)-arc transitive graphs Г are given and that AutГ≌J1 is proved.  相似文献   

18.
In 1983, the second author [D. Maru?i?, Ars Combinatoria 16B (1983), 297–302] asked for which positive integers n there exists a non‐Cayley vertex‐transitive graph on n vertices. (The term non‐Cayley numbers has later been given to such integers.) Motivated by this problem, Feng [Discrete Math 248 (2002), 265–269] asked to determine the smallest valency ?(n) among valencies of non‐Cayley vertex‐transitive graphs of order n. As cycles are clearly Cayley graphs, ?(n)?3 for any non‐Cayley number n. In this paper a goal is set to determine those non‐Cayley numbers n for which ?(n) = 3, and among the latter to determine those for which the generalized Petersen graphs are the only non‐Cayley vertex‐transitive graphs of order n. It is known that for a prime p every vertex‐transitive graph of order p, p2 or p3 is a Cayley graph, and that, with the exception of the Coxeter graph, every cubic non‐Cayley vertex‐transitive graph of order 2p, 4p or 2p2 is a generalized Petersen graph. In this paper the next natural step is taken by proving that every cubic non‐Cayley vertex‐transitive graph of order 4p2, p>7 a prime, is a generalized Petersen graph. In addition, cubic non‐Cayley vertex‐transitive graphs of order 2pk, where p>7 is a prime and k?p, are characterized. © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 77–95, 2012  相似文献   

19.
Let X be a vertex‐transitive graph, that is, the automorphism group Aut(X) of X is transitive on the vertex set of X. The graph X is said to be symmetric if Aut(X) is transitive on the arc set of X. suppose that Aut(X) has two orbits of the same length on the arc set of X. Then X is said to be half‐arc‐transitive or half‐edge‐transitive if Aut(X) has one or two orbits on the edge set of X, respectively. Stabilizers of symmetric and half‐arc‐transitive graphs have been investigated by many authors. For example, see Tutte [Canad J Math 11 (1959), 621–624] and Conder and Maru?i? [J Combin Theory Ser B 88 (2003), 67–76]. It is trivial to construct connected tetravalent symmetric graphs with arbitrarily large stabilizers, and by Maru?i? [Discrete Math 299 (2005), 180–193], connected tetravalent half‐arc‐transitive graphs can have arbitrarily large stabilizers. In this article, we show that connected tetravalent half‐edge‐transitive graphs can also have arbitrarily large stabilizers. A Cayley graph Cay(G, S) on a group G is said to be normal if the right regular representation R(G) of G is normal in Aut(Cay(G, S)). There are only a few known examples of connected tetravalent non‐normal Cayley graphs on non‐abelian simple groups. In this article, we give a sufficient condition for non‐normal Cayley graphs and by using the condition, infinitely many connected tetravalent non‐normal Cayley graphs are constructed. As an application, all connected tetravalent non‐normal Cayley graphs on the alternating group A6 are determined. © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

20.
Vizing conjectured that every edge chromatic critical graph contains a 2-factor. Believing that stronger properties hold for this class of graphs, Luo and Zhao (2013) showed that every edge chromatic critical graph of order n with maximum degree at least 6n7 is Hamiltonian. Furthermore, Luo et al. (2016) proved that every edge chromatic critical graph of order n with maximum degree at least 4n5 is Hamiltonian. In this paper, we prove that every edge chromatic critical graph of order n with maximum degree at least 3n4 is Hamiltonian. Our approach is inspired by the recent development of Kierstead path and Tashkinov tree techniques for multigraphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号