首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
以LiNO3、Ni(NO3)2.6H2O、50%Mn(NO3)2溶液、Cr(NO3)3.9H2O和尿素为原料,采用低温燃烧法合成了LiNi0.5Mn0.5-xCrxO2,研究了回火温度、回火时间、锂过量和掺铬量对正极材料电化学性能的影响。结果表明,采用低温燃烧法合成LiNi0.5Mn0.5-xCrxO2的优化条件为:回火温度850℃、回火时间16h、锂过量15%,适宜掺铬量x=0.02。在优化条件下合成的正极材料具有α-NaFeO2型层状结构、球状形貌和良好的电化学性能,以0.1C速率在2.5~4.6V之间充放电,首次放电容量为179.9mAh/g,第50次循环放电容量仍保有171.0mAh/g,容量保持率达到95.1%。  相似文献   

2.
张钰  粟智  潘会 《无机化学学报》2015,31(9):1827-1830
采用高温固相法制备了锂离子电池正极材料LiNi0.5Co0.4Al0.1O2。采用X射线衍射(XRD)、傅里叶红外光谱(FTIR)、扫描电子显微镜(SEM)对材料的结构及表观形貌进行分析。通过恒电流充放电以及循环伏安法进行了电化学性能测试。测试结果表明,充放电电压在3~4.5 V之间,在0.2C倍率下首次放电比容量达到159.9 mAh·g-1,经50次循环充放电后放电容量为142.6 mAh·g-1,表现出良好的电化学性能。  相似文献   

3.
采用高温固相法制备了锂离子电池正极材料LiNi0.5Co0.4Al0.1O2,采用X射线衍射(XRD)、傅里叶红外光谱(FTIR)、扫描电子显微镜(SEM)对材料的结构及表观形貌进行分析。通过恒电流充放电以及循环伏安法进行了电化学性能测试。测试结果表明,充放电电压在3~4.5V之间,在0.2C倍率下首次放电比容量达到159.9mAh·g-1,经50次循环充放电后放电容量为142.6mAh·g-1,表现出良好的电化学性能。  相似文献   

4.
采用碳酸盐共沉淀法通过调节NH3·H2O用量来实现可控制备超高倍率纳米结构LiNi1/3Co1/3Mn1/3O2正极材料。NH3·H2O用量会对颗粒的形貌、粒径、晶体结构以及材料电化学性能产生较大的影响。X射线衍射(XRD)分析和扫描电镜(SEM)结果表明,随着NH3·H2O用量的降低,一次颗粒形貌由纳米片状逐渐过渡到纳米球状,且nNH3·H2O:(nNi+nCo+nMn)=1:2样品晶体层状结构最完善、Li+/Ni2+阳离子混排程度最低。电化学性能测试结果也证实了nNH3·H2O:(nNi+nCo+nMn)=1:2样品具有最优异的循环稳定性和超高倍率性能。具体而言,在2.7~4.3 V,1C下循环300次后的放电比容量为119 mAh·g-1,容量保持率为81%,中值电压基本无衰减(保持率为97%)。在100C(18 Ah·g-1)的超高倍率下,放电比容量还能达到56 mAh·g-1,具有应用于高功率型锂离子电池的前景。此NH3·H2O比例值对于共沉淀法制备其他高倍率、高容量的正/负极氧化物材料具有一定的工艺参考价值。  相似文献   

5.
通过共沉淀法制备了球形LiNi0.5Mn1.5O4@Li3PO4复合材料,并采用X射线衍射(XRD)、扫描电镜(SEM)、红外光谱(FT-IR)、循环伏安(CV)、电化学阻抗谱(EIS)及充放电测试研究了其结构与电化学性能。XRD和SEM表明,Li3PO4包覆影响了球形LiNi0.5Mn1.5O4的晶格常数。CV和EIS表明,质量百分数5% Li3PO4包覆的LiNi0.5Mn1.5O4具有比纯LiNi0.5Mn1.5O4更高的锂离子嵌脱可逆性,更大的锂离子扩散系数和更小的电荷转移电阻,说明在锂离子扩散过程中,质量百分数5%Li3PO4包覆的LiNi0.5Mn1.5O4具有更高的电子电导率。充放电测试表明,原位Li3PO4改性提高了材料的电子电导率、电化学活性,进而提高了高倍率放电容量。质量百分数5% Li3PO4包覆的LiNi0.5Mn1.5O4提高的电化学性能归因于Li3PO4的包覆、纳米颗粒组成球形的粒径引起的高的电子电导率和小的电化学极化。  相似文献   

6.
通过共沉淀法制备了球形LiNi0.5Mn1.5O4@Li3PO4复合材料,并采用X射线衍射(XRD)、扫描电镜(SEM)、红外光谱(FT-IR)、循环伏安(CV)、电化学阻抗谱(EIS)及充放电测试研究了其结构与电化学性能.XRD和SEM表明,Li3PO4包覆影响了球形LiNi0.5Mn1.5O4的晶格常数.CV和EIS表明,质量百分数5% Li3PO4包覆的LiNi0.5Mn1.5O4具有比纯LiNi0.5Mn1.5O4更高的锂离子嵌脱可逆性,更大的锂离子扩散系数和更小的电荷转移电阻,说明在锂离子扩散过程中,质量百分数5%Li3PO4包覆的LiNi0.5Mn1.5O4具有更高的电子电导率.充放电测试表明,原位Li3PO4改性提高了材料的电子电导率、电化学活性,进而提高了高倍率放电容量.质量百分数5% Li3PO4包覆的LiNi0.5Mn1.5O4提高的电化学性能归因于Li3PO4的包覆、纳米颗粒组成球形的粒径引起的高的电子电导率和小的电化学极化.  相似文献   

7.
采用高温固相法合成了一系列不同含量Mg掺杂的LiNi0.90Co0.05Mn0.05O2正极材料,并通过X射线衍射、扫描电子显微镜、透射电子显微镜和X射线光电子能谱等表征手段对其物相结构、颗粒形貌及电化学性能进行了研究。结果表明,掺杂Mg元素虽然会降低材料的可逆容量,但是可扩大材料晶胞体积,抑制不可逆相变,改善电极与电解液的界面稳定性,可有效提升材料的循环稳定性。其中,3%摩尔分数掺杂量的LiNi0.90Co0.05Mn0.05O2正极材料结构稳定,容量损失较少,综合性能表现较好,在0.1 C、2.8~4.3 V电压范围内,首周充放电比容量达到了197.3 mA·h/g,100周的循环保持率达到了93.6%,且5 C下放电比容量为161.1 mA·h/g。  相似文献   

8.
采用共沉淀-高温固相烧结法合成了富镍型三元复合正极材料LiNi0.5Co0.2Mn0.3O2.恒流充放电测试表明,材料在3.0~4.4 V下0.2C放电容量达到179.2 mAh.g-1,但在55℃下经历100次充放电循环后发生急剧的容量衰减.电化学交流阻抗谱、X射线光电子能谱和原子发射光谱等实验表明,在高温高电压下,电解液与LiNi0.5Co0.2Mn0.3O2电极材料之间的副反应加剧,导致过渡金属原子溶出,该材料局域结构被破坏.同时,电极材料表面还沉积了高阻抗的LiF/MFx层,使得在电极的充放电过程中电荷转移阻抗和Li+扩散阻抗不断增加,以致电池容量急剧衰减.  相似文献   

9.
采用碳酸盐共沉淀与燃烧法相结合的方法制备得到了多孔微纳球形结构的富锂正极材料0.6Li2MnO3·0.4LiNi0.5Mn0.5O2。借助X射线衍射(XRD)分析、X射线光电子能谱(XPS)、扫描电镜(SEM)、透射电镜(TEM)、N2吸附-脱附和恒电流充放电测试研究了其晶体结构、微观形貌和电化学性能。结果表明该方法制备出的材料是由一次颗粒径约300 nm的小颗粒组成的多孔微纳球形结构,比表面积为13 m2·g-1,具有完善的α-NaFeO2层状结构(空间群为R3m)。电化学性能测试结果证实该材料具有优异的高容量、高循环稳定性和高倍率性能。在2.0~4.8 V,电流密度为0.1C、0.2C、0.5C、1C、3C、5C和10C时的放电比容量分别为:266、254、235、205、186、149和107 mAh·g-1;在0.5C下循环100次后,放电比容量仍为217 mAh·g-1(容量保持率为94%)。  相似文献   

10.
正极材料LiNi0.5Mn1.5O4的合成及性能   总被引:1,自引:1,他引:1  
采用低温固相法制备镍锰复合草酸盐,煅烧后生成的镍锰复合氧化物与Li3CO3混合,在空气中于700 ℃反应12 h,得到LiNi0.5Mn1.5O4。通过XRD,SEM和恒电流充放电测试对样品进行了表征。XRD结果表明:复合草酸盐经390 ℃煅烧3 h,生成了多相氧化物;合成的LiNi0.5Mn1.5O4为纯相,具有立方尖晶石结构。电化学测试结果表明,合成的样品在室温和高温(55 ℃)下,具有较好的电化学性能;大电流充放电时,具有良好的循环性能。  相似文献   

11.
使用草酸盐共沉淀法合成了LiNi0.5Mn0.5O2, 并研究了共沉淀时的pH条件对终产物的结构、形貌及电化学性能的影响. 采用X射线衍射(XRD)和扫描电镜(SEM)表征了在pH值为4.0、5.5、7.0和8.5时得到的共沉淀和终产物LiNi0.5Mn0.5O2的结构和形貌. 使用充放电实验研究了不同pH条件下得到的LiNi0.5Mn0.5O2的电化学性能. 结果表明, pH为7.0时, 合成的材料颗粒更小、分布最均匀, 材料具有良好的层状特征, 且材料中锂镍的混排程度最小. 电化学测试结果印证了pH为7.0时合成的材料具有更好的电化学性能, 在0.1C的倍率下, 材料的首次放电比容量达到了185 mAh·g-1, 在循环20周后, 放电比容量仍然保持在160 mAh·g-1. X射线光电子能谱(XPS)测试结果表明, pH为7.0时合成的LiNi0.5Mn0.5O2中Ni为+2价, Mn为+4价.  相似文献   

12.
采用碳酸盐共沉淀法通过调节NH_3·H_2O用量来实现可控制备超高倍率纳米结构LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料。NH_3·H_2O用量会对颗粒的形貌、粒径、晶体结构以及材料电化学性能产生较大的影响。X射线衍射(XRD)分析和扫描电镜(SEM)结果表明,随着NH_3·H_2O用量的降低,一次颗粒形貌由纳米片状逐渐过渡到纳米球状,且nNH_3·H_2O∶(nNi+nCo+nMn)=1∶2样品晶体层状结构最完善、Li~+/Ni~(2+)阳离子混排程度最低。电化学性能测试结果也证实了nNH_3·H_2O∶(nNi+nCo+nMn)=1∶2样品具有最优异的循环稳定性和超高倍率性能。具体而言,在2.7~4.3 V,1C下循环300次后的放电比容量为119 m Ah·g~(-1),容量保持率为81%,中值电压基本无衰减(保持率为97%)。在100C(18 Ah·g~(-1))的超高倍率下,放电比容量还能达到56 m Ah·g~(-1),具有应用于高功率型锂离子电池的前景。此NH_3·H_2O比例值对于共沉淀法制备其他高倍率、高容量的正/负极氧化物材料具有一定的工艺参考价值。  相似文献   

13.
为提高锂离子电池正极材料Li[Li0.2Ni0.2Mn0.6]O2的首次充放电效率,对固相法合成的该材料进行了酸浸的改性研究。通过X射线衍射(XRD)、扫描电子显微镜(SEM)对所得样品的结构、形貌进行了表征。结果表明,Li[Li0.2Ni0.2Mn0.6]O2经过酸处理后,首次放电效率得到了较大的提高,但是放电中值电压明显下降。其中,0.5 mol.L-1的硝酸浸泡5 h的效果最佳,首次放电效率达到了86.7%,同时放电容量达到最大值的循环次数大大减少。酸浸改性的原因被归结于材料表面出现了富锂尖晶石结构Li4Mn5O12相。  相似文献   

14.
以共沉淀法合成的(Ni1/3Co1/3Mn1/3)(OH)2为前驱体,在氧气氛中合成了层状正极材料LiNi1/3Co1/3Mn1/3O2,用F、Si离子复合掺杂的方法对其进行改性。X射线粉末衍射(XRD)分析表明,复合掺杂没有改变晶体的六方单相层状结构。扫描电镜(SEM)观察到产物呈类球形且颗粒均匀,平均粒径在0.1~0.2 μm。循环伏安(CV)性能显示,复合掺杂提高了该材料中Li+离子脱-嵌过程的可逆性。电化学阻抗谱(EIS)测试结果表明,复合掺杂降低了该材料的电化学极化,抑制其在循环过程中电化学反应阻抗的增加。复合掺杂后的层状材料首次放电容量为172.8 mAh·g-1 (0.2C),20次循环后仍有166.4 mAh·g-1。  相似文献   

15.
郑曦  曹林  朱文涛  邱新平 《化学学报》2007,65(7):571-574
利用高温固相法制备了具有层状结构的Li(Li0.15Ni0.21Fe0.21Mn0.45)O2阴极材料, 通过ICP-AES测定了各金属含量, XRD研究表明该材料在充放电过程中发生了结构变化. 进一步的电化学表征说明材料在结构转变后具有突出的高温循环性能(55 ℃), 以300 mA/g (2C)的电流密度循环428周后, 仍然能够保持80%的初始放电容量.  相似文献   

16.
用一种简单的共沉淀法制备出了层状LiNi1/2Mn1/2O2材料,并且用XRD、SEM、循环充放电、循环伏安(CV)和电化学阻抗谱(EIS)等方法对材料进行了表征测试。首先,用共沉淀法制备氢氧化镍和氢氧化锰的混合物;然后,对共沉淀溶液进行预氧化来制备前驱体;最后,用预氧化的前驱体合成了LiNi1/2Mn1/2O2材料。SEM和XRD测试结果分别表明:LiNi1/2Mn1/2O2材料是粒径范围在100~200 nm之间的球形粒子,并且具有非常好的层状结构。循环充放电表明:在空气中900 ℃下合成时间为9 h的材料,在充放电截止电压为2.8~4.6 V的情况下,经过40次循环,材料的容量可以稳定地保持在140 mAh·g-1左右。循环伏安曲线表明:在锂的初始脱嵌和入嵌过程中存在不可逆相变。电化学阻抗谱测试表明LiNi1/2Mn1/2O2具有很好的锂离子扩散能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号