首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We compared the optical properties of the trimeric photosystem (PS) I complexes of the primordial cyanobacterium Gloeobacter violaceus PCC 7421 with those of Synechocystis sp. PCC 6803. Gloeobacter violaceus PS I showed (1) a shorter difference maximum of P700 by approximately 2 nm, (2) a smaller antenna size by approximately 10 chlorophyll (Chl) a molecules and (3) an absence of Red Chls. The energy transfer kinetics in the antennae at physiological temperatures were very similar between the two species due to the thermal equilibrium within the antenna; however, they differed at 77 K where energy transfer to Red Chls was clearly observed in Synechocystis sp. PCC 6803. Taken together with the lower P700 redox potential in G. violaceus by approximately 60 mV, we discuss differences in the optical properties of the PS I complexes with respect to the amino acid sequences of core proteins and further to evolution of cyanobacteria.  相似文献   

2.
Absorption, fluorescence excitation, emission, and hole-burning (HB) spectra were measured at liquid helium temperatures for the PS I-CP43' supercomplexes of Synechocystis PCC 6803 grown under iron stress conditions and for respective trimeric PS I cores. Results are compared with those of room temperature, time-domain experiments (Biochemistry 2003, 42, 3893) as well as with the low-temperature steady-state experiments on PS I-CP43' supercomplexes of Synechococcus PCC 7942 (Biochim. Biophys. Acta 2002, 1556, 265). In contrast to the CP43' of Synechococcus PCC 7942, CP43' of Synechocystis PCC 6803 possesses two low-energy states analogous to the quasidegenerate states A and B of CP43 of photosystem II (J. Phys. Chem. B 2000, 104, 11805). Energy transfer between the CP43' and the PS I core occurs, to a significant degree, through the state A, characterized with a broader site distribution function (SDF). It is demonstrated that the low temperature (T = 5 K) excitation energy transfer (EET) time between the state A of CP43' (IsiA) and the PS I core in PS I-CP43' supercomplexes from Synechocystis PCC 6803 is about 60 ps, which is significantly slower than the EET observed at room temperature. Our results are consistent with fast (< or =10 ps) energy transfer from state B to state A in CP43'. Energy absorbed by the CP43' manifold has, on average, a greater chance of being transferred to the reaction center (RC) and utilized for charge separation than energy absorbed by the PS I core antenna. This indicates that energy is likely transferred from the CP43' to the RC along a well-defined path and that the "red antenna states" of the PS I core are localized far away from that path, most likely on the B7-A32 and B37-B38 dimers in the vicinity of the PS I trimerization domain (near PsaL subunit). We argue that the A38-A39 dimer does not contribute to the red antenna region.  相似文献   

3.
The pulsed excitation of electronic levels coupled to specific nuclear modes by a 26 fs laser pulse at 706 nm creates a wavepacket in the nuclear space of photopystem I (PS I) of Synechocystis sp. strain PCC 6803 both in the ground state and in the one-exciton manifold. Fourier transform of transient decay curves shows several low frequency peaks. The most prominent Power Spectral Density (PSD) peaks are at omega = 49 cm(-1) and omega = 88 cm(-1). The peculiarity of the coherent wavepacket in the PS I of S. sp. strain PCC 6803 is the unique, long-lived 49 cm(-1) and 88 cm(-1) oscillations with decay times up to 10 ps. It was suggested that such a long-lived coherence is determined by a contribution of the ground state wavepacket. The dependence of these two PSD peaks on the probe wavelength resembles the profile of the transient absorption spectra of PS I. The pump-probe signal in the Soret region reflects the dynamics of the ground state wavepacket created by pulsed excitation of the Q(y)-band. It was shown that the multimode Brownian oscillator model allows a quantitative fit of the oscillatory patterns of the pump-probe signal to be obtained.  相似文献   

4.
The effective fluorescence cross-section of photosystem 2 (PS2) was defined by measurements of chlorophyll a fluorescence induction curves for the wild type of the unicellular cyanobacterium Synechocystis sp. PCC6803, C-phycocyanin deficient mutant (CK), and mutant that totally lacks phycobilisomes (PAL). It was shown that mutations lead to a strong decrease of the PS2 effective fluorescence cross-section. For instance, the effective fluorescence cross-section of PS2 for wild type, CK and PAL mutants excited at λ(ex)=655 nm were found to be 896, 220 and 83 ?(2) respectively. Here we present an estimation of energy transfer efficiency from phycobilisomes to the pigment-protein complexes of PS2. It was shown that the PS2 fluorescence enhancement coefficient reaches a maximum value of 10.7 due to the energy migration from phycobilisomes. The rate constant of energy migration was found to be equal to 1.04 × 10(10) s(-1).  相似文献   

5.
We identified the two intermediate states, I and J, that are common in the photocycles of the cyanobacterial BLUF (sensor of Blue Light Using Flavin) domain proteins of Slr1694 of Synechocystis sp. PCC6803 and Tll0078 of Thermosynechococcus elongatus BP-1 by analyzing the absorption spectra at 5 K. Illumination at 5 K accumulated intermediate forms (designated as I5 and I9), which showed 5 and 9 nm redshifts of the absorption bands of flavin in the Tll0078 and Slr1694 proteins, respectively. I5 (I9) was converted into the next intermediate, which have 11 nm (14 nm) red-shifted absorption bands J11 (J14) after dark annealing at 230 K (240 K). Further dark annealing at 280 K (270 K) of J11 (J14) produced the signal-transmitting final form F490 (F495), with a small increase in the absorption at around 490 nm (495 nm). The results indicate that the BLUF proteins of Tll0078 and Slr1694 exhibit the common photocycle of D471 (D467) --> I5 (I9) --> J11 (J14) --> F490 (F495) at low temperature. The transition temperatures for these intermediate forms differ for two proteins. The amount of I5 (I9) accumulated at 5 K was small and increased at a higher temperature, suggesting heterogeneity of the protein structure that determines the reaction pathway.  相似文献   

6.
Photomovement of the Gliding Cyanobacterium Synechocystis sp. PCC 6803   总被引:3,自引:0,他引:3  
Abstract— Using a computerized videomicroscope motion analysis system, we investigated the photomovements of two Synechocystis sp. (PCC 6803 and ATCC 27184). Synechocystis sp. PCC 6803 displays a relatively slow gliding motion. The phototactic and photokinetic speeds of this cyanobacterium in liquid media were 5μm/min and 15.8 μm/min, respectively, at 3μmol/m2/s of stimulant white light. Synechocystis sp. PCC 6803 senses light direction rather than intensity for phototaxis. Synechocystis sp. ATCC 27184 showed a weak photokinesis but no phototaxis. Analysis of Synechocystis sp. ATCC 27184 suggests that the loss of phototaxis results from spontaneous mutation during several years of subculture. When directional irradiation was applied, the cell population of Synechocystis sp. PCC 6803 began to deviate from random movement and reached maximum orientation at 5 min after the onset of stimulant white light. Synechocystis sp. PCC 6803 showed high sensitivity to the stimulant white light of fluence rates as low as 0.002 |unol/m2/s. Neither 1,3-dichlorophenyldimethyl urea nor cyanide affected phototactic orientation, whereas cyanide inhibited gUding speed. This result suggests that the phototaxis of Synechocystis sp. PCC 6803 is independent of photosynthetic phosphorylation and that its gliding movement is primarily powered by oxidative phosphorylation. In the visible wavelength region, 560 nm, 660 nm and even 760 nm caused positive phototaxis. However, 360 nm light induced strikingly negative phototaxis. Therefore, at least two independent photoreceptors may exist to control phototaxis. The photoreceptor for positive phototaxis appears likely to be a phytochrome-like tetrapyrrole rather than chlorophyll a .  相似文献   

7.
We present a method for label-free microscopic analysis of nonmetallic nanoparticles such as biopolymers or technical polymers diffusing freely in an aqueous environment. We demonstrate the principal feasibility of the approach with first measurements of 20-200 nm sized polystyrene spheres and of the approximately 10 nm protein complex Photosystem I (PS I) of Thermosynechococcus elongatus. The approach is based on the combination of a microscope setup with a deep-nulling interferometer for measuring minute refractive index changes or absorptions in the focal area of the microscope. It is possible to obtain transient nulls in a microscope setup on the order of 10(-5), corresponding to optical pathway differences of less than 0.6 nm and to stabilize the nulls to about 5.10(-4). With this level of stabilization it is possible to perform a fast (1 s) correlational analysis of aqueous solutions containing the protein complex PS I or 20 nm spheres and to detect in real time single diffusional transits of larger nanospheres through the focal area of the microscope. A modulated heating of the samples in the microscope focus is not necessary for detection. The interferometer correlation data correspond well to conventional two-photon excited fluorescence correlation (FCS) data measured in the same setup, providing evidence that the detection volumes are of a similar size (approximately 200 nm). We also conducted first nulling experiments using coherent near-field sources of about 30 nm diameter. Theoretical considerations indicate that this combination with nanometric near-field sources will even allow label-free single-protein analysis.  相似文献   

8.
Insight into the influence of UV-C radiation on the evolutionary relationship between prokaryotic and eukaryotic algae was studied in seven species of algae exposed to different UV-C irradiances. The order of their acclimation (from most tolerant to sensitive) is Synechococcus sp. PCC7942 (Cyanophyta), Synechocystis sp. PCC6803 (Cyanophyta), Chlorella protothecoides (Chlorophyta), Chlamydomonas reinhardtii (Chlorophyta), Phaeodactylum  tricornutum (Bacillariophyta), Alexandrium  tamarense (Pyrrhophyta) and Dicrateria  zhanjiangensis (Chrysophyta). These results are in accordance with the algal evolution process that is generally accepted and proved by fossil record. It shows that UV-C radiation is an important environmental factor that cannot be ignored in the evolutionary process from prokaryotic algae to eukaryotic algae. The threshold of UV-C radiation at which prokaryotic algae can survive but eukaryotic algae cannot was found to be approximately 0.09 W m−2. This was the first time to determine with precision the irradiance level at which UV-C contributed as a selection pressure of evolution. Furthermore, the effects of UV-C radiation on photosynthetic performance, growth rate and pigment content were investigated in two species of prokaryotic algae: Synechococcus sp. PCC7942 and Synechocystis sp. PCC6803, and two species of eukaryotic algae: C. reinhardtii and C. protothecoides . After 6 days of exposure, the contents of chlorophyll a and carotenoids decreased in all species, moreover reduction in C. reinhardtii and C. protothecoides was more obvious than in Synechococcus sp. PCC7942 and Synechocystis sp. PCC6803. The ability to photosynthesize followed the same trend as the pigments.  相似文献   

9.
Abstract— An undissociated photosystem I complex may be isolated from spinach thylakoids by mild gel electrophoresis (CP1a) or Triton X-100. CP1a has a Chl a / b ratio of 11 and a Chl/P700 ratio of 120. while the Triton X-100 PS I complex (Chl a / b ratio of 5.9) has a larger antenna unit size (Chl/P700 ratio of 180). None of the Chl a / b -proteins of the main light-harvesting complex (apoproteins of 30–27 kD) are present in CP1a, and they account for less than 10% of the total chlorophyll in the Triton X-100 PS I complex. Instead, these PS I complexes have specific, but as yet little characterized, Chi a / b -proteins (apoproteins in the 26–21 kD range). With both PS I complexes, Chi b transfers light excitation to the 735 nm low temperature fluorescence band characteristic of photosystem I. We suggest that Chi b is an integral but minor component of photosystem I.  相似文献   

10.
The primary charge separation in photosystem (PS) I was measured on stacked pea thylakoids using the light-gradient photovoltage technique. Upon 532 nm excitation with picosecond flashes, a trapping time of 80 ± 10 ps for PS I was found, which is in close agreement with literature data. In the wavelength range between 700 nm and 717 nm the trapping time was essentially the same although there was an indication for a slight decrease. To further analyze the data we performed a spectral decomposition of PS I with Chi a and b solvent spectra. This procedure yielded bands at around 682 nm, 690 nm, 705 nm and 715 nm. According to this decomposition, a selective excitation of long-wavelength antenna pigments at wavelengths Λ > 710 nm is possible, because the direct excitation of the main 682 nm band is small compared to the excitation of the two most red-shifted bands. The invariability of the trapping time of the excitation wavelength suggests thermal equilibration of the excitation energy among all antenna pigments according to their excited state energy levels and their abundance. Hence, we conclude that trapping in PS I is essentially rate-limited by the primary charge separation much as it is the case in PS II. Then, according to our spectral decomposition in a time constant of2–3 ps is predicted for the primary charge separation in PS I.  相似文献   

11.
X-ray structures of the Photosystem II (PSII) core revealed relatively large interpigment distances between the CP43 and CP47 antenna complexes and the reaction center (RC) with respect to the interpigment distances in a single unit. This finding questions the possibility of fast energy equilibration among the antenna and the RC, which has been the basic explanation for the measured PSII fluorescence kinetics for more than two decades. In this study, we present time-resolved fluorescence measurements obtained with a streak-camera setup on PSII core complexes from Thermosynechococcus elongatus at room temperature (RT) and at 77 K. Kinetic modeling of the RT data obtained with oxidized quinone acceptor Q(A), reveals that the kinetics are best described by fast primary charge separation at a time scale of 1.5 ps and slow energy transfer from the antenna into the RC, which results in an energy equilibration time between the antenna and the RC of about 44 ps. This model is consistent with structure-based computations. Primary radical pair formation was found to be a virtually irreversible process. Energy equilibration within the CP43 and CP47 complexes is shown to occur at a time scale of 8 ps. Kinetic modeling of the 77 K data reveals similar energy transfer time scales in the antenna units and among the antenna and the RC as at RT, respectively, 7 and 37 ps. We conclude that the energy transfer from the CP43/CP47 antenna to the RC is the dominant factor in the total charge separation kinetics in intact PSII cores.  相似文献   

12.
We present time-resolved fs two-photon pump-probe data measured with photosystem I (PS I) of Thermosynechococcus elongatus. Two-photon excitation (lambda(exc)/2 = 575 nm) in the spectral region of the optically forbidden first excited singlet state of the carotenoids, Car S1, gives rise to a 800 fs and a 9 ps decay component of the Car S1 --> S(n) excited-state absorption with an amplitude of about 47 +/- 16% and 53 +/- 10%, respectively. By measuring a solution of pure beta-carotene under exactly the same conditions, only a 9 ps decay component can be observed. Exciting PS I at exactly the same spectral region via one-photon excitation (lambda(exc) = 575 nm) also does not show any sub-ps component. We ascribe the observed constant of 800 fs to a portion of about 47 +/- 16% beta-carotene states that can potentially transfer their energy efficiently to chlorophyll pigments via the optically dark Car S1 state. We compared these data with conventional one-photon pump-probe data, exciting the optically allowed second excited state, Car S2. This comparison demonstrates that the fast dynamics of the optically forbidden state can hardly be unravelled via conventional one-photon excitation only because the corresponding Car S1 populations are too small after Car S2 --> Car S1 internal conversion. A direct comparison of the amplitudes of the Car S1 --> S(n) excited-state absorption of PS I and beta-carotene observed after Car S2 excitation allows determination of a quantum yield for the Car S1 formation in PS I of 44 +/- 5%. In conclusion, an overall Car S2 --> Chl energy-transfer efficiency of approximately 69 +/- 5% is observed at room temperature with 56 +/- 5% being transferred via Car S2 and probably very hot Car S1 states and 13 +/- 5% being transferred via hot and "cold" Car S1 states.  相似文献   

13.
Chlorophyll (Chl) a', the C13(2)-epimer of Chl a, is one of the two Chl molecules constituting the primary electron donor (P700) of photosystem (PS) I of a thermophilic cyanobacterium Synechococcus elongatus. To examine whether PS I of other oxygenic photosynthetic organisms in general contain one Chl a' molecule in P700, the pigment composition of thylakoid membranes and PS I preparations isolated from red algae Porphyridium purpureum and Cyanidium caldarium was examined by reversed-phase HPLC with particular attention to Chl a' and phylloquinone (PhQ), the secondary electron acceptor of PS I. The two red algae contained one Chl a' molecule at the core part of PS I. In PS I of C. caldarium, two menaquinone-4 (MQ-4) molecules were detected in place of PhQ used by higher plants and cyanobacteria. The 1:2:1 stoichiometry among Chl a', PhQ (MQ-4) and P700 in PS I of the red algae indicates that one Chl a' molecule universally exists in PS I of oxygenic photosynthetic organisms, and two MQ-4 molecules are associated with PS I of C. caldarium.  相似文献   

14.
In this work, mycosporine-like amino acids (MAAs) of Synechocystis sp. PCC 6803 were characterized and were investigated on UV induction and protective ability. High performance liquid chromatographic (HPLC) studies revealed three major compounds in the MAAs. By UV absorption and mass spectra analysis, one of the compounds was tentatively identified as mycosporine-tau (M-tau). One novel compound similar to usujirene was tentatively named as dehydroxylusujirene, and the other novel compound was named as M-343 according to its absorption maximum. In vivo experiments indicated that M-tau was induced by both UV-A and UV-B, while dehydroxylusujirene and M-343 were only induced by UV-A, suggesting that different chromophores were involved in MAAs synthesis in Synechocystis sp. PCC 6803. It was also indicated that M-343 could be photochemically synthesized from some precursors. Under both UV and oxidation stresses, M-343 was more stable than dehydroxylusujirene and M-tau. Considering the reaction with H2O2, M-tau and dehydroxylusujirene might be potential antioxidants in reaction with physiological reactive oxygen species in vivo. In protection experiments, the MAAs exhibited efficient protective ability towards UV-B and H2O2 stresses, with maximal protection rates of 30% and 21.5%, respectively. These results indicate that the MAAs in Synechocystis sp. PCC 6803 act as both UV-screen and antioxidant.  相似文献   

15.
Wavelength-dependent one- and two-color photon echo peak shift spectroscopy was performed on the chlorophyll Qy band of trimeric photosystem I from Thermosynechococcus elongatus. Sub-100 fs energy transfer steps were observed in addition to longer time scales previously measured by others. In the main PSI absorption peak (675-700 nm), the peak shift decays more slowly with increasing wavelength, implying that energy transfer between pigments of similar excitation energy is slower for pigments with lower site energies. In the far-red region (715 nm), the decay of the peak shift is more rapid and is complete by 1 ps, a consequence of the strong electron-phonon coupling present in this spectral region. Two-color photon echo peak shift data show strong excitonic coupling between pigments absorbing at 675 nm and those absorbing at 700 nm. The one- and two-color peak shifts were simulated using the previously developed energy transfer model (J. Phys. Chem. B 2002, 106, 10251; Biophysical Journal 2003, 85, 140). The simulations agree well with the experimental data. Two-color photon echo peak shift is shown to be far more sensitive to variations in the molecular Hamiltonian than one-color photon echo peak shift spectroscopy.  相似文献   

16.
In the filamentous, nitrogen-fixing cyanobacterium Anabaena sp. PCC7120, red light (630 nm) decreased, whereas far-red light (720 nm) increased cellular adenosine 3',5'-cyclic monophosphate (cAMP) content. To find a red and far-red light photoreceptor that triggers the cAMP signal cascade, we disrupted 10 open reading frame having putative chromophore-binding GAF domains. The response of the cellular cAMP concentration to red and far-red light in each open reading frame disruptant was determined. It was found that only the mutant of the gene all2699 failed to respond to far-red light. The open reading frame named as aphC encoded a protein with 920 amino acids including GAF domains similar to those involved in Cph2, a photoreceptor of Synechocystis sp. PCC6803. To determine which adenylate cyclase (AC) is responsible for far-red light signal, we disrupted all AC genes and found that CyaC was the candidate. The enzymatic activity of CyaC might be controlled by a far-red light photoreceptor through the phosphotransfer reaction. The site-specific mutant of the Asp59 residue of the receiver (R1) domain of CyaC lost its light-response capability. It was suggested that the far-red light signal was received by AphC and then transferred to the N-terminal response regulator domain of CyaC. Then its catalytic activity was stimulated, which increased the cellular cAMP concentration and drove the subsequent signal transduction cascade.  相似文献   

17.
[reaction: see text] Type II isopentenyl diphosphate:dimethylallyl diphosphate (IPP:DMAPP) isomerase from Synechocystis PCC 6803 catalyzes the interconversion of IPP and DMAPP. Upon incubation of the enzyme with IPP or DMAPP in 2H2O, one deuterium is incorporated into the C2 methylene of IPP, two deuteriums are incorporated at C4, and three deuteriums are incorporated into the (E)-methyl of DMAPP.  相似文献   

18.
Blue-light sensitive photoreceptory BLUF domains are flavoproteins, which regulate various, mostly stress-related processes in bacteria and eukaryotes. The photoreactivity of the flavin adenine dinucleotide (FAD) cofactor in three BLUF domains from Rhodobacter sphaeroides, Synechocystis sp. PCC 6803 and Escherichia coli have been studied at low temperature using time-resolved electron paramagnetic resonance. Photoinduced flavin triplet states and radical-pair species have been detected on a microsecond time scale. Differences in the electronic structures of the FAD cofactors as reflected by altered zero-field splitting parameters of the triplet states could be correlated with changes in the amino-acid composition of the various BLUF domains' cofactor binding pockets. For the generation of the light-induced, spin-correlated radical-pair species in the BLUF domain from Synechocystis sp. PCC 6803, a tyrosine residue near the flavin's isoalloxazine moiety plays a critical role.  相似文献   

19.
The second cyanobacterial phytochrome Cph2 from Synechocystis sp. PCC 6803 was suggested as a part of a light-stimulated signal transduction chain inhibiting movement toward blue light. Cph2 has the two bilin binding sites, cysteine-129 and cysteine-1022, that might be involved in sensing of red/far-red and blue light, respectively. Here, we present data on wavelength dependence of the phototaxis inhibition under blue light, indicating that Cph2 itself is the photoreceptor for this blue light response. We found that inhibition of blue-light phototaxis in wild-type cells occurred below the transition point of about 470 nm. Substitution of cysteine-1022 with valine led to photomovement of the cells toward blue light (cph2(-) mutant phenotype). Analysis of mutants lacking cysteine-129 in the N-terminal chromophore binding domain indicated that this domain is also important for Cph2 function or folding of the protein. Furthermore, putative blue-light and phytochrome-like photoreceptors encoded by the Synechocystis sp. PCC 6803 genome were inactivated in wild-type and cph2 knockout mutant background. Our results suggest that none of these potential photoreceptors interfere with Cph2 function, although inactivation of taxD1 as well as slr1694 encoding a BLUF protein led to cells that reversed the direction of movement under blue light illumination in mutant strains of cph2.  相似文献   

20.
In cyanobacteria, activation of the Orange Carotenoid Protein (OCP) by intense blue-green light triggers photoprotective thermal dissipation of excess absorbed energy leading to a decrease (quenching) of fluorescence of the light harvesting phycobilisomes and, concomitantly, of the energy arriving to the reaction centers. Using spectrally resolved picosecond fluorescence, we have studied cells of wild-type Synechocystis sp. PCC 6803 and of mutants without and with extra OCP (ΔOCP and OverOCP) both in the unquenched and quenched state. With the use of target analysis, we managed to spectrally resolve seven different pigment pools in the phycobilisomes and photosystems I and II, and to determine the rates of excitation energy transfer between them. In addition, the fraction of quenched phycobilisomes and the rates of charge separation and quenching were resolved. Under our illumination conditions, ~72% of the phycobilisomes in OverOCP appeared to be substantially quenched. For wild-type cells, this number was only ~29%. It is revealed that upon OCP activation, a bilin chromophore in the core of the phycobilisome, here called APC(Q)(660), with fluorescence maximum at 660 nm becomes an effective quencher that prevents more than 80% of the excitations in the phycobilisome to reach Photosystems I and II. The quenching rate of its excited state is extremely fast, that is, at least (~240 ± 60 fs)(-1). It is concluded that the quenching is most likely caused by charge transfer between APC(Q)(660) and the OCP carotenoid hECN in its activated form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号