首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultraviolet (UV) electroluminescence (EL) of n-ZnO:Al (AZO)/i-layer/n-GaN heterojunctions with different intrinsic layers has been obtained. Rectifying behavior and EL spectra of the heterojunctions are investigated at room temperature. Under positive voltage, a dominant UV emission peak around ~370 nm is observed for both AZO/i-ZnO/n-GaN and AZO/i-MgO/n-GaN heterojunctions. Nevertheless, the UV emission peak intensity of AZO/i-MgO/n-GaN heterojunction is much stronger than that of AZO/i-ZnO/n-GaN heterojunction at the same voltage. The threshold voltage of AZO/i-MgO/n-GaN heterostructured device is as low as 2.3 V. The difference of EL spectra and the emission mechanism in these devices are discussed.  相似文献   

2.
Vertically aligned ZnO nanowires were successfully grown on the sapphire substrate by nanoparticle-assisted pulsed laser deposition (NAPLD), which were employed in fabricating the ZnO nanowire-based heterojunction structures. p-GaN/n-ZnO heterojunction light-emitting diodes (LEDs) with embedded ZnO nanowires were obtained by fabricating p-GaN:Mg film/ZnO nanowire/n-ZnO film structures. The current–voltage measurements showed a typical diode characteristic with a threshold voltage of about 2.5 V. Electroluminescence (EL) emission having the wavelength of about 380 nm was observed under forward bias in the heterojunction diodes and was intensified by increasing the applied voltage up to 30 V.  相似文献   

3.
A phosphor-converted light-emitting diode (LED) was realized by coating BaMg2Al16O27:Eu2+·Mn2+ and (SrCaPO4)·B2O3:Eu2+·Na+ phosphors onto an n-ZnO/i-MgO/p-GaN heterojunction diode. Two emission bands at around 450 and 520 nm were observed in the phosphor-converted LED under the injection of continuous current. By analyzing the optical properties of the heterojunction diode and phosphors, it is concluded that the emission at 450 nm comes from (SrCaPO4)·B2O3:Eu2+·Na+ phosphor, while the one at 520 nm comes from BaMg2Al16O27:Eu2+·Mn2+ phosphor under the excitation of the light emitted from the n-ZnO/i-MgO/p-GaN heterojunction diode. The results reported in this paper may provide a route to ZnO-based phosphor-converted LEDs for future lighting or displaying purpose.  相似文献   

4.
Atomic layer deposition was used to grow n-type Al-doped ZnO (n-ZnO) and undoped ZnO (i-ZnO) layers on p-type 4H-SiC substrates, to fabricate n-ZnO/p-SiC and n-ZnO/i-ZnO/p-SiC heterojunction light-emitting diodes (LEDs). Electroluminescence (EL) from the n-ZnO/p-SiC LED originated from radiative recombination of donor–acceptor pairs in SiC due to the predominant electron injection from n-ZnO into p-SiC. On the other hand, the n-ZnO/i-ZnO/p-SiC LED exhibited dominant ultraviolet (UV) emission at 393 nm from ZnO. This difference is attributable to the insertion of the undoped i-ZnO layer between n-ZnO and p-SiC, leading to the injection of holes from p-SiC and electrons from n-ZnO into the i-ZnO layer and thus the generation of UV EL from ZnO.  相似文献   

5.
n-ZnO:Al/n ?-ZnO/i-MgO/n-GaN heterostructured diodes have been fabricated by radio frequency magnetron sputtering. The electroluminescence (EL) of the n-ZnO:Al/n ?-ZnO/i-MgO/n-GaN diodes has been investigated. All EL spectra are dominated by ultraviolet (UV) emission peaked at around 368 nm. However, EL performances of the devices can be tuned through controlling the electrical parameters of ZnO:Al films. With the variation of the ZnO:Al films, EL spectra could evolve into random lasing action from conventional EL. The electrical parameters of the corresponding ZnO:Al films were researched, and the related UV emission mechanism is discussed in terms of the energy-band theory of the heterojunctions.  相似文献   

6.
The electronic structure of the n-GaN(0001) and Al x Ga1 ? x N(0001) (x = 0.16, 0.42) surfaces and the Ba/n-GaN and Ba/AlGaN interfaces is subjected to in situ photoemission investigations in the submonolayer Ba coverage range. The photoemission spectra of the valence band and the spectra of the surface states and the core 3d level of Ga, the 2p level of Al, and the 4d and 5p levels of Ba are studied during synchrotron excitation in the photon energy range 50–400 eV. A spectrum of the surface states in Al x Ga1 ? x N (x = 0.16, 0.42) is found. The electronic structure of the surface and the near-surface region is found to undergo substantial changes during the formation of the Ba/n-GaN and Ba/AlGaN interfaces. The effect of narrowing the photoemission spectrum in the valence band region from 10 to 2 eV is detected, and surface eigenstates are suppressed. The Ba adsorption is found to induce the appearance of a new photoemission peak in the bandgap at the Fermi level in the Ba/n-GaN and Ba/n-Al0.16Ga0.84N interfaces. The nature of this peak is found to be related to the creation of an accumulation layer due to a change in the near-surface potential and enriching band bending. The energy parameters of the potential well of the accumulation layer are shown to be controlled by the Ba coverage.  相似文献   

7.
Based on the easily controllable radio frequency magnetron sputtering, n-ZnO and i-MgO thin films were fabricated on p+-GaN substrate to construct heterojunctional light-emitting diodes for ultraviolet emission from the near band edge exciton recombination of ZnO. Effects of the insulator MgO layer on the electroluminescent performance of the n-ZnO/i-MgO/p+-GaN light-emitting diodes have been investigated. It was found that the light-emitting diode presented stronger near band-edge emission with blue shift emission peak under the lower working current when i-MgO layer was inserted. The fabrication process, characteristics and the mechanism were discussed in detail.  相似文献   

8.
We examine the effects of the oxygen plasma pre-treatments on the material properties of n-ZnO grown on p-Si and characterize the electrical properties of n-ZnO/p-Si heterojunction diodes. The lattice spacing of ZnO becomes larger when the ZnO thin film is grown on the oxygen plasma pre-treated Si substrate. This might be relevant to the growth of (101) ZnO onto the ultra-thin SiO2 interfacial layer, which is formed during the oxygen plasma pre-treatment onto the Si substrate. The formation of SiO2 gives rise to the increase in the donor-like defect Zn interstitial, and the increased grain size improves the carrier mobility. Because of all the above, the differential conductance at the on-state is increased for the n-ZnO/p-Si heterojunction diode.  相似文献   

9.
The effects of deposition conditions on the physical and electrical performance of the n-ZnO/p-Si heterojunction were systematically investigated. ZnO films were deposited on the Si and glass substrates using direct current (DC) magnetron sputtering with various ambients and substrate temperatures. The results showed that increasing the O2 content and substrate temperature during the deposition process could improve the crystallinity and stoichiometry of the ZnO film, resulting in a lower carrier concentration and higher resistivity. The electrical properties of the n-ZnO/p-Si heterojunctions were also affected by the deposition parameters. For the junctions fabricated in the pure Ar ambient, the sample deposited at room temperature (RT) showed Ohmic behavior, while the one deposited at 300?°C exhibited poor rectifying behavior. On the other hand, the junctions fabricated in the O2/Ar ambient possessed ideal rectifying behaviors. The different carrier transport mechanisms for the heterojunctions under forward and reverse bias were systematically studied using a high temperature current–voltage (I-V) measurement. The recombination-tunneling current showed temperature insensitive performance while the space-charge limited current (SCLC) changed with the measurement temperature.  相似文献   

10.
Phosphorus (P)-doped ZnO thin films with amphoteric doping behavior were grown on c-sapphire substrates by radio frequency magnetron sputtering with various argon/oxygen gas ratios. Control of the electrical types in the P-doped ZnO films was achieved by varying the gas ratio without post-annealing. The P-doped ZnO films grown at a argon/oxygen ratio of 3/1 showed p-type conductivity with a hole concentration and hole mobility of 1.5 × 1017 cm−3 and 2.5 cm2/V s, respectively. X-ray diffraction showed that the ZnO (0 0 0 2) peak shifted to lower angle due to the positioning of P3− ions with a larger ionic radius in the O2− sites. This indicates that a p-type mechanism was due to the substitutional PO. The low-temperature photoluminescence of the p-type ZnO films showed p-type related neutral acceptor-bound exciton emission. The p-ZnO/n-Si heterojunction light emitting diode showed typical rectification behavior, which confirmed the p-type characteristics of the ZnO films in the as-deposited status, despite the deep-level related electroluminescence emission.  相似文献   

11.
A high-quality Ga2O3 thin film is deposited on an SiC substrate to form a heterojunction structure. The band alignment of the Ga2O3/6H-SiC heterojunction is studied by using synchrotron radiation photoelectron spectroscopy. The energy band diagram of the Ga2O3/6H-SiC heterojunction is obtained by analysing the binding energies of Ga 3d and Si 2p at the surface and the interface of the heterojunction. The valence band offset is experimentally determined to be 2.8 eV and the conduction band offset is calculated to be 0.89 eV, which indicate a type-II band alignment. This provides useful guidance for the application of Ga2O3/6H-SiC electronic devices.  相似文献   

12.
Thin Ga2O3 films were grown on Si (100) using trimethylgallium (TMG) and oxygen as the precursors through plasma-enhanced atomic layer deposition. The depositions were made over a temperature range of 80–250?°C with a growth per cycle of around 0.07 nm/cycle. Surface self-saturating growth was obtained with TMG pulse time ≥20?ms?at a temperature of 150?°C. The root mean square surface roughness of the obtained Ga2O3 films increased from 0.1?nm to 0.3?nm with increasing the growth temperature. Moreover, the x-ray photoelectron spectroscopy analysis indicated that the obtained film was Ga-rich with the chemical oxidation states Ga3+ and Ga1+, and no carbon contamination was detected in the films after Ar+ sputtering. The electron density of films measured by x-ray reflectivity varied with the growth temperature, increasing from 4.72 to 5.80?g/cm3. The transmittance of Ga2O3 film deposited on a quartz substrate was obtained through ultraviolet visible (UV–Vis) spectroscopy. An obvious absorption in the deep UV region was demonstrated with a wide band gap of 4.6–4.8?eV. The spectroscopic ellipsometry analysis indicated that the average refractive index of the Ga2O3 film was 1.91?at 632.8?nm and increased with the growth temperature due to the dense structure of the films. Finally, the I-V and C-V characteristics proved that the Ga2O3 films prepared in this work had a low leakage current of 7.2?×?10?11 A/cm2 at 1.0?MV/cm and a high permittivity of 11.9, suitable to be gate dielectric.  相似文献   

13.
《Current Applied Physics》2020,20(2):352-357
We report on the electroluminescent (EL) and electrical characteristics of graphene-inserted ZnO nanorods (NRs)/p-GaN heterojunction diode. In a comparative study, ZnO NRs/p-GaN and ZnO NRs/graphene/p-GaN heterojunctions exhibit white and yellow EL emissions, respectively, at reverse bias (rb) voltages. The different EL colors are results of different dichromatic EL peak intensity ratios between 2.25 and 2.8 eV light emissions which are originated from ZnO and p-GaN sides, respectively. The 2.25 eV EL is predominant in both the heterojunctions, because of recombination by numerous electrons tunneled from p-GaN to ZnO across the thin barriers of the staggered broken gap with a large band offset in ZnO/p-GaN and the van der Waals (vdW) gap formed by graphene insertion at ZnO NRs/p-GaN. However, as for the 2.8 eV EL intensity, ZnO NRs/graphene/p-GaN hardly shows the EL emission, whereas ZnO NRs/p-GaN exhibits the substantially strong EL peak. We discuss that the significantly reduced 2.8 eV EL emission of ZnO NRs/graphene/p-GaN is a result of decreased depletion layer thickness at p-GaN side where the recombination events occur for 2.8 eV EL before the reverse bias-driven tunneling because the insertion of graphene (or vdW gap barrier) inhibits the carrier diffusion whose amount determines the depletion thickness when forming the heterojunctions. This study opens a way of suppressing (or enhancing) the specific EL wavelength for the dichromatic EL-emitting heterojunctions simply by inserting atom-thick vdW layer.  相似文献   

14.
The photo-current of n-ZnO/p-Si heterojunction photodiodes was improved by embedding Ag nanoparticles in the interface (ZnO/nano-PAg/p-Si), and the ratio between photo- and dark-current increased by about three orders more than that of a n-ZnO/p-Si specimen. The improvement in the photo-current resulted from the light scattering of embedded Ag nanoparticles. The IV curve of n-ZnO/p-Si degraded after thermal treatment (A-ZnO/p-Si) because the silicon robbed the oxygen from ZnO to form amorphous silicon dioxide and left an oxygen vacancy. Notably, the properties of ZnO/nano-PAg/p-Si were better in the time-dependent photoresponse under 10 V bias. Ag nanoparticles (15–20 nm) scattered the UV light randomly and increased the probability for the absorption of ZnO to enhance the properties of the photodiode.  相似文献   

15.
Multi-functional magnetic, photoluminescent and photocatalytic CoFe2O4-ZnO nanocomposites were successfully synthesized by a collosol method. The average diameter of the prepared CoFe2O4-ZnO nanocomposites was 30±5 nm, and a diffusion layer was formed to link CoFe2O4 and ZnO. The saturation magnetization of the CoFe2O4-ZnO nanocomposites was 8.99 emu/g. Generation of ZnO from Zn(OH)2 collosol was nearly complete after thermal decomposition at about 380 °C. A photoluminescence emission peak was observed at 443 nm when excitated at 350 nm. Degradation of methyl orange is performed by CoFe2O4-ZnO nanocomposites under ultraviolet radiation, with a degradation rate of up to 93.9%.  相似文献   

16.
The introduction of an additional Zn impurity (codopant) significantly increases the emission intensity in the short-wavelength spectral range in Eu-doped GaN crystals. The substantial increase in the emission intensity (at λ=400?450 nm) in crystals with p-type conductivity is caused by radiative intracenter f-f transitions characteristic of Eu3+ ions. For n-GaN crystals with a high degree of compensation by shallow impurities, additional doping with Zn causes only an increase in the intensity of the donor-acceptor recombination band.  相似文献   

17.
Ga2O3 was-synthesized by doping a premixed H2/O2/Ar flat flame with diluted trimethyl gallium Ga(CH3)3 in a low-pressure reactor. The mean particle diameter d p of the resulting metal oxide was characterized in-situ with a particle mass spectrometer (PMS), and was observed to range between 2.5 nm ≤ d p ≤ 6.5 nm. XRD results show that the as-synthesized Ga2O3 nanoparticles are mostly amorphous, although, a few broad reflexes were observed that indicate the presence of some degree of crystallinity. Thermal annealing of the as-synthesized material at 1000 °C for 5 min yielded β-Ga2O3 with a monoclinic structure. UV–VIS measurements indicate strong absorption in the UV range (4.8 eV), which corresponds quite well to the direct band gap of bulk Ga2O3. Photoluminescence (PL) measurements of the as-synthesized metal oxide show a broad emission ranging from 350 nm to 600 nm with a maximum at 460 nm. Crystalline β-Ga2O3 exhibited stronger luminescence than as-synthesized particles.  相似文献   

18.
In this study, n-ZnO/p-Si solar cells were fabricated by spraying ZnO nanoparticles (NPs) film synthesised by dissolving of high purity zinc in hydrogen peroxide H2O2 followed by thermal oxidation in air on p-type silicon substrates. The oxidation was carried out at different temperatures (200–500) °C. The crystalline structure of the ZnO NPs films was investigated by X-ray diffraction which indicated wurtzite structure films along (100) plane. The morphology of the NPs was studied by atomic force microscopy and scanning electron microscopy. The result showed an average grain size of ZnO NPs in the range of (72.7–95.8) nm and the surface roughness increasing with oxidation temperature. Three peaks located at ultraviolet, violet and green emission regions were noticed in the photoluminescence spectra of ZnO NPs. From optical studies, it was shown that the direct optical band gap is found to be in the range of (3.85–3.96) eV depended on the oxidation temperature. The synthesised ZnO films have n-type conductivity, and the mobility was in the range of (7–24) cm2 V?1 s?1. Current–voltage IV and capacitance–voltage CV of ZnO NPs/Si heterojunction solar cell were investigated as function of oxidation temperature. The spectral response of n-ZnO NPs/p-Si solar cell showed two peaks of response and its maximum value approaching 0.62 mA W?1 at λ = 800 nm. Solar cell oxidized at 500 °C gave open circuit voltage V OC of 375 mV, short circuit current density J SC of 25 mA cm?2, a fill factor FF of 0.72, and conversion efficiency η of 6.79 % under illumination of 100 mW cm?2.  相似文献   

19.
研究了AlGaN层参数对GaN基n+-GaN/i-AlxGa1-xN/n+-GaN结构紫外和红外双色探测器中紫外响应的影响规律及物理机制.模拟计算发现:降低AlGaN层本底载流子浓度会增加器件的量子效率,当本底载流子浓度不能进一步降低时,可以通过减小AlGaN层的厚度以保证器件的量子效率.在材料生长和器件工艺过程中都应减少界面态.外加较小的反向偏压能大幅度提高紫外量子效率,分析表明,GaN/AlGaN/GaN形成的两个背靠背、方向相反的异质结电场是出现这些现象的根本原因.在实际器件设计中,应该根据需要调节各结构参数,以保证器件的量子效率.  相似文献   

20.
采用射频磁控溅射和N2气氛退火处理制备了多晶Ga2O3薄膜和Cu掺杂Ga2O3薄膜.用X射线衍射仪、紫外-可见分光光度计、荧光光谱仪对Ga2O3薄膜和Cu掺杂Ga2O3薄膜的结构和光学性能进行了表征.结果表明,Cu掺杂后Ga2O3薄膜的结晶质量变差,透过率明显降低,吸收率增加,光学带隙减小.本征Ga2O3薄膜在紫外、蓝光和绿光出现了发光带,Cu掺杂后紫外和蓝光发射增强,且在475 nm 处出现了一个新的发光峰.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号