首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Succinate: quinone reductases (SQRs) are the enzymes that couple the oxidation of succinate and the reduction of quinones in the respiratory chain of prokaryotes and eukaryotes. Herein, we compare the temperature‐dependent activity and structural stability of two SQRs, the first from the mesophilic bacterium Escherichia coli and the second from the thermophilic bacterium Thermus thermophilus, using a combined electrochemical and infrared spectroscopy approach. Direct electron transfer was achieved with full membrane protein complexes at single‐walled carbon nanotube (SWNT)‐modified electrodes. The possible structural factors that contribute to the temperature‐dependent activity of the enzymes and, in particular, to the thermostability of the Thermus thermophilus SQR are discussed.  相似文献   

2.
The accurate determination of analyte concentrations with selective, fast, and robust methods is the key for process control, product analysis, environmental compliance, and medical applications. Enzyme-based biosensors meet these requirements to a high degree and can be operated with simple, cost efficient, and easy to use devices. This review focuses on enzymes capable of direct electron transfer (DET) to electrodes and also the electrode materials which can enable or enhance the DET type bioelectrocatalysis. It presents amperometric biosensors for the quantification of important medical, technical, and environmental analytes and it carves out the requirements for enzymes and electrode materials in DET-based third generation biosensors. This review critically surveys enzymes and biosensors for which DET has been reported. Single- or multi-cofactor enzymes featuring copper centers, hemes, FAD, FMN, or PQQ as prosthetic groups as well as fusion enzymes are presented. Nanomaterials, nanostructured electrodes, chemical surface modifications, and protein immobilization strategies are reviewed for their ability to support direct electrochemistry of enzymes. The combination of both biosensor elements—enzymes and electrodes—is evaluated by comparison of substrate specificity, current density, sensitivity, and the range of detection.  相似文献   

3.
Abstract

Nicotinamide adenine dinucleotide (NAD) is an important cofactor in a number of oxidoreductase enzyme systems. The detection and quantitation of its reduced form (NADH) is the basis for a number of methods which determine both substrates and enzyme activity. Although electrochemical techniques have shown promise in this area, they have suffered from a lack of selectivity. Liquid chromatography with electrochemical detection (LCEC) provides the selectivity and the sensitivity required. The use of alcohol dehydrogenase (ADH) for blood alcohol detection is investigated as a model system.  相似文献   

4.
Gun  J.  Lev  O.  Regev  O.  Pevzner  S.  Kucernak  A. 《Journal of Sol-Gel Science and Technology》1998,13(1-3):189-193
A new method for the formation of reticular silicate and organically modified silicate is introduced. Monoliths were prepared by incorporating a few percent hydrogen peroxide in the sol-gel starting solution. For example, incorporation of 6–10% (v) hydrogen peroxide in base catalyzed sol-gel precursors of methyl-Ormosil yielded macroporous monoliths with a bi-modal pore size distribution. The average characteristic pore diameters were approximately 1.2 nm and 0.7 m, depending on the sol-gel precursors used and the preparation protocol. The specific surface area was approximately 160 m2/g, contributed mainly by the microporous structure. A similar preparation procedure without hydrogen peroxide yielded only fractured or powdery materials. Presumably, the decomposition of the hydrogen peroxide yielded microbubbles, which formed templates for the polycondensation reaction. SEM, nitrogen adsorption isotherms and small angle X-ray spectroscopy were used to characterize the reticular materials.  相似文献   

5.
6.
7.
以废弃聚氨酯泡沫(PUF)为原料,在其表面依次修饰聚丙烯酸(PAA)、Fe~(3+),然后在230℃条件下,通过高温碳化处理,制备了具有多孔结构的磁性碳化泡沫材料.用光学显微镜、红外吸收光谱(FTIR)、X-射线衍射(XRD)、接触角对磁性碳化泡沫进行表征.详细考察了AA含量、Fe~(3+)浓度对材料吸附容量、吸附速率的影响.材料具有明显的亲油、疏水特性,对各种有机溶剂和油类分子吸附容量都在10 g/g以上,而且在5 min内就可吸附饱和,同时材料密度小,可漂浮于水面对有机溶剂进行快速吸附,并通过外界磁场实现快速分离.因此,该材料在原油泄漏处理、油水分离、油田采出液处理、工业污水净化等领域具有重要的应用价值.  相似文献   

8.
《Electroanalysis》2003,15(7):629-634
Electrochemical CV and SWV studies were performed with double stranded DNA from salmon testes (dsDNA) and single stranded DNAs, containing 25 nucleotides (ssDNA) directly adsorbed at polycrystalline Au electrodes. A distinct oxidation peak at +730 mV (SWV, scan rate 0.248 V s?1) or at +730 – +780 mV (CV, scan rate from 0.3 to 1 V s?1) was obtained with DNA‐modified Au electrodes after a time‐dependent prepolarization step at a positive potential value, i.e., at +500 mV (vs. Ag|AgCl), performed with the DNA‐modified Au electrodes dipped in a blank buffer solution. No electrochemical activity was detected when ssDNA, containing no guanines, was used for adsorptive modification of the Au electrodes. Electrochemical impedance measurements registered a possible reorganization of the adsorbed DNA layer in the course of the prepolarization, accompanied by decreasing in‐phase impedance. The results enable us to relate the oxidation process observed at the DNA‐modified Au electrodes with the oxidation of guanine residues in DNA.  相似文献   

9.
《Electroanalysis》2006,18(11):1126-1130
The covering of conventional solid electrode with a film using an ink containing a conductive powder and a polymer enables to broaden the potential window of the original solid electrode. A solid silver amalgam electrode covered with such a film exhibits a potential window from ?600 mV to +1400 mV vs. SCE reference electrode. The renewal of the film is fast and simple: the electrode can be simply wiped with a filter paper to remove the old film and immersed into an ink solution or 1–2 μL of this ink solution can be applied to the surface of the electrode with a micro dispenser to form a new film. Therefore, just the inexpensive film at the electrode surface is disposable and there is no need to dispose the whole, more expensive electrode. Moreover, when a suitable electrochemical pretreatment of the film electrode is applied, the same film can be used for reproducible measurements for several days.  相似文献   

10.
酶直接电化学与第三代生物传感器   总被引:10,自引:0,他引:10  
池其金  董绍俊 《分析化学》1994,22(10):1065-1072
本文详细地评述并展望了酶直接电化学与第三代生物传感器这个领域已取得的成果,主要内容涉及生物电催化的三个发展阶段,实现酶与电极之间的直接电子转移方法和相应机理、以及第三代酶传感器的研制。  相似文献   

11.
《Analytical letters》2012,45(5):817-853
Abstract

Carbon and its derivatives, as the high performance material, occupy a special place in electrochemistry due to its ‐in many ways‐ extreme properties. Recent trends and advances in the electrochemistry of carbon‐based electrodes are reviewed. The varieties of carbon‐based electrodes, their basic physicochemical properties and some characteristics are surveyed. Special attention is paid to the possibilities of carbon‐based electrodes in electroanalytical investigation in pharmaceutical dosage forms and biological samples using modern electrochemical techniques. This review includes a summary of the rules that must be considered for drug analysis from its dosage forms and biological samples using carbon‐based electrodes. The present review is the first comprehensive report on the heterogeneous and homogeneous carbon electrodes, and an addition to many excellent reviews on carbon electrodes in the literature. This review summarizes some of the recent developments and applications of carbon‐based electrodes for drug compounds in their dosage forms and in biological samples in the period from 1996 till 2006. Also some further selected designs (screen‐printed; carbon nanotubes, etc.) and applications have been discussed.  相似文献   

12.
硅酸钠与有机硅氧烷前驱体合成有机官能化硅基介孔材料   总被引:1,自引:2,他引:1  
采用有机硅氧烷(RTES)与硅酸钠(Na2SiO3)共水解缩聚合成有机官能化的 MSU型硅基介孔材料,当前驱体中RTES和硅酸钠的摩尔比为0.1:0.9时合成了R- MSU(R=甲基,氨基)分子筛,通过现代分析技术证明有机官能团均进入材料骨架 。选用CH3-MSU合成体系,考察了合成温度、前驱体与模板剂摩尔比及前驱体中有 机硅氧烷含量等反应参数对材料织构性能的影响,发现通过简单地调节反应参数, 能较好地控制材料的结构和表面特性。  相似文献   

13.
Summary A fast and straightforward method for the direct determination of ad the extent of axial dispersion under normal working conditions is presented. The method makes use of the peak variance of Poisson distributions, which can be determined from the points of inflection. The applicability of this method is experimentally demonstrated for four series of commercially available polymer standards. Theoretical calculations and experimental results are presented that confirm that this method also works with narrow distributions which are the weighted sum of several adjacent Poisson distributions.Presented at: International Symposium on Separation and Characterization of Natural and Synthetic Macromolecules, Amsterdam, The Netherlands, February 5–7, 2003  相似文献   

14.
The currents that are generated in a porous electrode with an immobilized enzyme increase with increasing concentration of molecules of an electrochemically active enzyme. However, a finely divided composite, which is manufactured from colloidal particles of a support that have nanodimensions and molecules of the enzyme with the aid of methods of colloid chemistry, has a peculiar structure: it consists of a set of fractal clusters, which are capable of adsorbing only a limited number of enzyme molecules. The paper is devoted to computer simulation of all the stages of immobilization of the enzyme, specifically, producing random fractal clusters of required dimensions and deploying molecules of the enzyme on them. An analysis of the link of the concentration of molecules of an active enzyme with the structure and characteristics of a porous composite makes it possible to give an interpretation to experimental facts obtained by other authors for an oxygen electrode consisting of finely divided colloidal graphite and laccase.  相似文献   

15.
A novel approach was used to immobilize glycosylated enzymes on a glassy carbon electrode (GCE) based on the interaction of boronic acid and carbohydrate moiety within the glycoproteins. 4-Aminomethylphenylboronic acid (4-AMBA) was covalently grafted on a glassy carbon electrode (GCE) by amine cation radical formation in the electrooxidation process of the amino-containing compound. The boronic acid group immobilized in this way could recognize glycoproteins such as glucose oxidase, horseradish peroxidase, dehydrogenase and others. X-ray photoelectron spectroscopy measurement proved the presence of a 4-AMBA monolayer on the GCE. The adsorptions of three kinds of enzymes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The activity of the immobilized horseradish peroxidase was also studied.  相似文献   

16.
采用磷酸活化和磷酸改性制备了不同种类的含磷活性炭,采用元素分析、X射线光电子能谱(XPS)和氮气吸附等手段分析了活性炭的元素含量、表面化学性质和孔隙结构,采用恒电流充放电、循环伏安和交流阻抗分别考察了活性炭在KOH和H2SO4电解质溶液中作为超级电容器电极材料的电化学性能,采用自由截距多元线性回归拟合统计分析研究了活性炭电极比电容量的影响因素,应用三电极体系分析了磷元素对活性炭电化学性能的影响机理。研究结果表明,活性炭掺杂的磷引入了赝电容,提高了活性炭电极的比电容量,磷元素含量为5.88%(w)的活性炭的比电容量在0.1 A·g-1下达到185 F·g-1。统计分析结果显示,活性炭的中孔有利于电解质离子向微孔内的扩散。在6 mol·L-1 KOH电解质溶液中,孔径在1.10-1.61 nm、2.12-2.43nm及3.94-4.37 nm范围内是电解质离子在活性炭孔隙内部形成双电层的主要场所;在1 mol·L-1 H2SO4电解质溶液中,孔径在0.67-0.72 nm范围内有利于双电层电容的形成。  相似文献   

17.
以合成的4-巯基苯甲酸功能化纳米金粒子和聚乙烯基吡啶包覆纳米金粒子分别作为固酶载体, 制备了2种新型固酶电极, 在此基础上组装了2种酶燃料电池。采用电化学方法结合紫外可见分光光度法、透射电镜技术等手段研究了固酶载体的形貌, 酶-载体间相互作用对电极表面固定酶分子的光谱学性质, 酶-电极间直接电子迁移能力和催化底物反应性能的影响, 进一步评估和比较了两种酶燃料电池的能量输出性能。实验结果表明:4-巯基苯甲酸功能化纳米金粒子固酶基电极可以实现酶-电极间的直接电子迁移而且对葡萄糖和氧气具有良好的催化性能(催化反应起始电位分别为-0.03和0.96 V, 底物转化频率分别是1.3和0.5 s-1), 其催化性能的重现性、长期使用性能、酸碱耐受性和热稳定性良好, 随着自组装固酶层数的增加, 催化性能随之增强直至达到极限催化电流;电池性能测试结果表明4-巯基苯甲酸功能化纳米金粒子固酶基燃料电池的开路电压为0.88 V, 最大输出能量密度:864.0 μW·cm-2, 长期使用性能优异(储存3 周后仍可达到最佳能量输出的80%以上)。  相似文献   

18.
曾涵  杨阳  赵淑贤 《无机化学学报》2015,31(12):2305-2314
以合成的4-巯基苯甲酸功能化纳米金粒子和聚乙烯基吡啶包覆纳米金粒子分别作为固酶载体,制备了2种新型固酶电极,在此基础上组装了2种酶燃料电池。采用电化学方法结合紫外可见分光光度法、透射电镜技术等手段研究了固酶载体的形貌,酶-载体间相互作用对电极表面固定酶分子的光谱学性质,酶-电极间直接电子迁移能力和催化底物反应性能的影响,进一步评估和比较了两种酶燃料电池的能量输出性能。实验结果表明:4-巯基苯甲酸功能化纳米金粒子固酶基电极可以实现酶-电极间的直接电子迁移而且对葡萄糖和氧气具有良好的催化性能(催化反应起始电位分别为-0.03和0.96 V,底物转化频率分别是1.3和0.5 s-1),其催化性能的重现性、长期使用性能、酸碱耐受性和热稳定性良好,随着自组装固酶层数的增加,催化性能随之增强直至达到极限催化电流;电池性能测试结果表明4-巯基苯甲酸功能化纳米金粒子固酶基燃料电池的开路电压为0.88 V,最大输出能量密度:864.0 μW·cm-2,长期使用性能优异(储存3 周后仍可达到最佳能量输出的80%以上)。  相似文献   

19.
《Electroanalysis》2006,18(11):1131-1134
The direct electrochemistry of glucose oxidase (GOD) was revealed at a carbon nanotube (CNT)‐modified glassy carbon electrode, where the enzyme was immobilized with a chitosan film containing gold nanoparticles. The immobilized GOD displays a pair of redox peaks in pH 7.4 phosphate buffer solutions (PBS) with the formal potential of about ?455 mV (vs. Ag/AgCl) and shows a surface‐controlled electrode process. Bioactivity remains good, along with effective catalysis of the reduction of oxygen. In the presence of dissolved oxygen, the reduction peak current decreased gradually with the addition of glucose, which could be used for reagentless detection of glucose with a linear range from 0.04 to 1.0 mM. The proposed glucose biosensor exhibited high sensitivity, good stability and reproducibility, and was also insensitive to common interferences such as ascorbic and uric acid. The excellent performance of the reagentless biosensor is attributed to the effective enhancement of electron transfer between enzyme and electrode surface by CNTs, and the biocompatible environment that the chitosan film containing gold nanoparticles provides for immobilized GOD.  相似文献   

20.
细胞色素c在纳米氧化铝模板修饰电极上的直接电化学   总被引:5,自引:0,他引:5  
细胞色素c(Cytochrome c,Cyt c)是生物体中最常见的氧化一还原蛋白质,研究其在电极上的直接电化学,对于理解和认识生命体内的电子转移机制具有重要意义。Cytc与裸固体电极表面的直接接触通常会使其失去生物活性,因此,Cytc的电化学研究常借助于媒介体以实现其与电极之间的电子转移。纳米金属氧化物模板的表面积大且化学和光化学性质稳定,被广泛应用于太阳能电池和金属沉积等领域,本文研究氧化铝(AAO)模板对4,4’-二硫二吡啶存在下Cytc直接电化学促进作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号