首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using the fluid model for the nonlinear response of ions, we have studied the nonlinear scattering of an electromagnetic ion cyclotron wave off the ion acoustic wave in a plasma. The low frequency nonlinearity arises through the parallel ponderomotive force on ions and the high frequency nonlinearity arises through the nonlinear current density of ions. For a typical nonisothermal plasma (T e/T i∼10) the threshold for this instability in a uniform plasma is ∼1mW/cm2. At power densities ≳102 W/cm2, the growth rate for backscatter turns out to be ∼104s−1.  相似文献   

2.
Ruby-laser light scattering was used to gain spatially and temporally resolved information about plasma parameters for nanosecond CO2 laser-plasma interaction studies. The results confirm a heating model, where heat conduction in dense model plasmas can be described classically. CO2-laser excited stimulated Brillouin scattering could directly be shown to arise from near thermal level by simultaneous Thomson scattering with a ruby-laser, and turbulence enhanced density fluctuations could be excluded.  相似文献   

3.
This paper is devoted to the study of the interaction of particles with two beating plasma waves. We follow the instructional article by Ott and Dum. According to them, the sum of wave actions during the interaction is constant, supposing the effect of trapped particles on the beat can be neglected. In the present paper, this problem is solved more generally, just for the case of trapped and also untrapped particles in the wave. Our study shows that the sum of wave actions is constant also in the case when the influence of the trapped particles on the amplitudes of two waves was considered. On the contrary this conclusion is not valid if it is supposed that two original waves are amplitude modulated e.g. by the influence of the interaction of the beat with particles. The author is deeply indebted to Dr. Ladislav Krlín for guidance and encouragement throughout the course of this work.  相似文献   

4.
We study the propagation and interaction of ion-acoustic solitary waves in a simple two-dimensional plasma by using the extended Poincare Lighthill-Kuo perturbation method. We consider the interaction between two ion-acoustic solitary waves with different propagation directions in such a system, and obtain two Korteweg-de Vries equations for small but finite amplitude solitary waves along both ξ and η trajectories. The effects of the ratio of ion temperature σ the ratio of heat capacity γ and the colliding angle a on the amplitude, the width of the new nonlinear wave created by the collision between two solitary waves are studied. The effects of these parameters on both the colliding solitary waves are examined as well. It is found that all the above-mentioned parameters have significant effects on the properties of these nonlinear waves.  相似文献   

5.
We present a theoretical investigation of the excitation of multiple electrostatic wakefields by the ponderomotive force of a short electromagnetic pulse propagating through a dense plasma. It is found that the inclusion of the quantum statistical pressure and quantum electron tunneling effects can qualitatively change the classical behavior of the wakefield. In addition to the well-known plasma oscillation wakefield, with a wavelength of the order of the electron skin depth (λe=c/ωpe, which in a dense plasma is of the order of several nanometers, where c is the speed of light in vacuum and ωpe is the electron plasma frequency), wakefields in dense plasmas with a shorter wavelength (in comparison with λe) are also excited. The wakefields can trap electrons and accelerate them to extremely high energies over nanoscales.  相似文献   

6.
It is shown that large-scale zonal flows (ZFs) can be excited by Reynolds stress of nonlinearly interacting random phase ion-acoustic waves (EIAWs) in a uniform magnetoplasma. Since ZFs are associated with poloidal sheared flows, they can tear apart short scale EIAW turbulence eddies, and hence contribute to the reduction of the cross-field turbulent transport in a magnetized plasma.  相似文献   

7.
Strong burst of an internal kink mode is observed on the HL-2A tokamak. Features of the fishbone-like mode are presented. The fishbone-like instabihties can be driven during electron cyclotron resonance heating (ECRH) and can be excited on the high field side (HFS) by ECRH. It is found for the first time that the modes also present themselves on the low field side (LFS) during ECRH. Experiments show that the energetic electrons with energy of 35-70 keV play a dominant role in the excitation mechanism, and the experimental results are also consistent with our calculation ones.  相似文献   

8.
An adiabatic hot dusty plasma (containing non-inertial adiabatic electron and ion fluids, and negatively charged inertial adiabatic dust fluid) is considered. The basic properties of arbitrary amplitude dust-acoustic (DA) solitary waves, which exist in such an adiabatic hot dusty plasma, are explicitly examined by the pseudo-potential approach. To compare the basic properties (critical Mach number, amplitude and width) of the DA solitary waves observed in a dusty plasma containing adiabatic electron, ion and dust fluids with those observed in a dusty plasma containing isothermal electron and ion fluids and adiabatic dust fluid, it has been found that the adiabatic effect of inertia-less electron and ion fluids has significantly modified the basic properties of the DA solitary waves, and that on the basic properties of the DA solitary waves, the adiabatic effect of electron and ion fluids is much more significant than that of the dust fluid.  相似文献   

9.
A dusty plasma system consisting of electrons, ions, and negative as well as positive dust particles has been considered. The basic properties of arbitrary amplitude solitary potential structures that may exist in such a multi-component dusty plasma have been theoretically investigated by the pseudo-potential approach. It has been found that the presence of additional positive dust component does not only significantly modify the basic properties of solitary potential structures, but also causes the coexistence of positive and negative solitary potential structures, which is a completely new feature shown in a dusty plasma with dust of opposite polarity.  相似文献   

10.
A.A. Mamun 《Physics letters. A》2008,372(9):1490-1493
The nonlinear propagation of dust-ion-acoustic (DIA) waves in an adiabatic dusty plasma (containing adiabatic inertial-less electrons, adiabatic inertial ions, and negatively charged static dust) is investigated by the pseudo-potential approach. The combined effects of adiabatic electrons and negatively charged static dust on the basic properties (critical Mach number, amplitude, and width) of small as well as arbitrary amplitude DIA solitary waves are explicitly examined. It is found that the combined effects of adiabatic electrons and negatively charged static dust significantly modify the basic properties (critical Mach number, amplitude, and width) of the DIA solitary waves. It is also found that due to the effect of adiabaticity of electrons, negative DIA solitary waves [which are found to exist in a dusty plasma (containing isothermal electrons, cold ions, and negatively charged static dust) for α=zdnd0/ni0>2/3, where zd is the number of electrons residing onto a dust grain surface, nd0 is the constant (static) dust number density and ni0 is the equilibrium ion number density] disappears, i.e. due to the effect of adiabatic electrons, one cannot have negative DIA solitary waves for any possible set of dusty plasma parameters [0?α<1 and 0?σ=Ti0/Te0?1, where Ti0 (Te0) is electron (ion) temperature at equilibrium].  相似文献   

11.
Linear and nonlinear electrostatic waves in unmagnetized electron-positron-ion (e-p-i) plasmas are studied. The electrons and positrons are assumed to be isothermal and dynamic while ions are considered to be stationary to neutralize the plasma background only. It is found that both upper (fast) and lower (slow) Langmuir waves can propagates in such a type of pair (e-p) plasma in the presence of ions. The small amplitude electrostatic Korteweg-de Vries (KdV) solitons are also obtained using reductive perturbation method. The electrostatic potential hump structures are found to exist when the temperature of the electrons is larger than the positrons, while the electrostatic potential dips are obtained in the reverse temperature conditions for electrons and positrons in e-p-i plasmas. The numerical results are also shown for illustration. The effects of different ion concentration and temperature ratios of electrons and positrons, on the formation of nonlinear electrostatic potential structures in e-p-i plasmas are also discussed.  相似文献   

12.
Stimulated Brillouin backscattering (SBS) of nanosecond CO2 laser radiation is investigated from an homogeneous extended plasma for well defined interaction conditions. It is found that SBS saturates at the theoretical limit near 100% Growth of SBS ion-waves starts from near thermal-wave amplitudes. Theoretical and observed SBS threshold fluxes agree within the 50% error bounds of these values. It is pointed out that self focusing does not greatly affect SBS under the conditions investigated. SBS thresholds depend on plasma density and focal spot diameter. It is indicated that an equilibrium between inverse bremsstrahlung absorption and classical heat conduction can explain several aspects.  相似文献   

13.
P.K. Shukla 《Physics letters. A》2009,373(20):1768-1770
It is shown that the dust ion-acoustic (DIA) and dust acoustic (DA)-like perturbations can be excited by the electron density and ion density ripples, respectively. For this purpose, we use the relevant equations for the DIA and DA-like disturbances and derive the standard Mathieu equation. The latter admits unstable solutions, demonstrating that both the DIA and DA-like mode can be driven on account of the free energy in the plasma density ripples.  相似文献   

14.
This paper presents an investigation of self-focusing of Gaussian laser beam in collisionless plasma and its effect on stimulated Raman scattering process. The pump beam interacts with a pre-excited electron plasma wave thereby generating a back-scattered wave. On account of Gaussian intensity distribution of laser beam, the time independent component of the ponderomotive force along a direction perpendicular to the beam propagation becomes finite, which modifies the background plasma density profile in a direction transverse to pump beam axis. This modification in density affects the incident laser beam, electron plasma wave and back-scattered beam. We have set up the non-linear differential equations for the beam width parameters of the main beam, electron plasma wave, back-scattered wave and SRS-reflectivity by taking full non-linear part of the dielectric constant of collisionless plasma with the help of moment theory approach. It is observed from the analysis that focusing of waves greatly enhances the SRS reflectivity.  相似文献   

15.
Smain Younsi 《Physics letters. A》2008,372(31):5181-5188
The problem of nonlinear variable charge dust acoustic waves in a dusty plasma with trapped ions is revisited. The correct non-isothermal ion charging current is presented for the first time based on the orbit motion limited (OML) approach. The variable dust charge is then expressed in terms of the Lambert function and we take advantage of this new transcendental function to investigate nonlinear localized dust acoustic waves in a charge varying dusty plasma with trapped ions more rigorously.  相似文献   

16.
Rabia Amour 《Physics letters. A》2009,373(22):1951-1955
A first theoretical attempt is made to investigate small amplitude, variable charge dust Bernstein-Greene-Kruskal (BGK) double layers (DLs). The nature of the dust BGK-DLs (compressive or rarefactive), their strength and thickness depend sensitively on the net negative charge residing on the grain surface, the dust grain dynamics and, more interestingly, on the ion-to-electron temperatures ratio.  相似文献   

17.
A new mechanism whereby Neoclassical Tearing Modes (NTMs) can be triggered through toroidal mode coupling to a magnetic perturbation is proposed. The physical picture is the presence of a relatively small “pre-NTM” magnetic island whose frequency is modified by the perturbation, changing polarization current effects from stabilizing to destabilizing.  相似文献   

18.
The propagation of nonplanar quantum ion-acoustic solitary waves in a dense, unmagnetized electron-positronion (e-p-i) plasma are studied by using the Korteweg-de Vries (KdV) model. The quantum hydrodynamic (QHD) equations are used taking into account the quantum diffraction and quantum statistics corrections. The analytical and numerical solutions of KdV equation reveal that the nonplanar ion-acoustic solitons arc modified significantly with quantum corrections and positron concentration, and behave differently in different geometries.  相似文献   

19.
Dust ion-acoustic solitary waves in unmagnetized quantum plasmas are studied in spherical and cylindrical geometries. Using quantum hydrodynamic model, the electrostatic waves are investigated in the weakly nonlinear limit. A deformed Korteweg-de Vries (dKdV) equation is derived by using the reductive perturbation method and its numerical solutions are also presented. The quantum diffraction and quantum statistical effects incorporated in the system modifies the characteristics of dust ion-acoustic waves in cylindrical and spherical geometries. The role of stationary dust particles in quantum plasmas are also discussed. It is shown that the cylindrical and spherical dust ion-acoustic solitary waves behave quite differently from one-dimensional planar solitary waves in quantum plasmas.  相似文献   

20.
Generation of electromagnetic radiation under interaction of initially monoenergetic beam with collisionless plasma is studied experimentally. The threshold for EM radiation is found to be determined by the “indirect” collapse of beam excited Langmuir waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号