首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The zero-one integer programming problem and its special case, the multiconstraint knapsack problem frequently appear as subproblems in many combinatorial optimization problems. We present several methods for computing lower bounds on the optimal solution of the zero-one integer programming problem. They include Lagrangean, surrogate and composite relaxations. New heuristic procedures are suggested for determining good surrogate multipliers. Based on theoretical results and extensive computational testing, it is shown that for zero-one integer problems with few constraints surrogate relaxation is a viable alternative to the commonly used Lagrangean and linear programming relaxations. These results are used in a follow up paper to develop an efficient branch and bound algorithm for solving zero-one integer programming problems.  相似文献   

2.
This paper considers the problem of determining the disassembly schedule (quantity and timing) of products in order to satisfy the demand of their parts or components over a finite planning horizon. The objective is to minimize the sum of set-up, disassembly operation, and inventory holding costs. As an extension of the uncapacitated versions of the problem, we consider the resource capacity restrictions over the planning horizon. An integer program is suggested to describe the problem mathematically, and to solve the problem, a heuristic is developed using a Lagrangean relaxation technique together with a method to find a good feasible solution while considering the trade-offs among different costs. The effectiveness of the algorithm is tested on a number of randomly generated problems and the test results show that the heuristic suggested in this paper can give near optimal solutions within a short amount of computation time.  相似文献   

3.
This paper focuses on the problem of determining locations for long-term care facilities with the objective of balancing the numbers of patients assigned to the facilities. We present a branch and bound algorithm by developing dominance properties, a lower bounding scheme and a heuristic algorithm for obtaining an upper bound for the problem. For evaluation of the suggested branch and bound algorithm, computational experiments are performed on a number of test problems. Results of the experiments show that the suggested algorithm gives optimal solutions of problems of practical sizes in a reasonable amount of computation time.  相似文献   

4.
This paper considers a scheduling problem with two identical parallel machines. One has unlimited capacity; the other can only run for a fixed time. A given set of jobs must be scheduled on the two machines with the goal of minimizing the sum of their completion times. The paper proposes an optimal branch and bound algorithm which employs three powerful elements, including an algorithm for computing the upper bound, a lower bound algorithm, and a fathoming condition. The branch and bound algorithm was tested on problems of various sizes and parameters. The results show that the algorithm is quite efficient to solve all the test problems. In particular, the total computation time for the hardest problem is less than 0.1 second for a set of 100 problem instances. An important finding of the tests is that the upper bound algorithm can actually find optimal solutions to a quite large number of problems.  相似文献   

5.
The problem of determining a project selection schedule and a production-distribution-inventory schedule for each of a number of plants so as to meet the demands of multiregional markets at minimum discounted total cost during a discrete finite planning horizon is considered. We include the possibility of using inventory and/or imports to delay the expansion decision at each producing region in a transportation network. Through a problem reduction algorithm, the Lagrangean relaxation problem strengthened by the addition of a surrogate constraint becomes a 0–1 mixed integer knapsack problem. Its optimal solution, given a set of Lagrangean multipliers, can be obtained by solving at most two generally smaller 0–1 pure integer knapsack problems. The bound is usually very tight. At each iteration of the subgradient method, we generate a primal feasible solution from the Lagrangean solution. The computational results indicate that the procedure is effective in solving large problems to within acceptable error tolerances.  相似文献   

6.
It is well-known that exact branch and bound methods can only solve small or moderately sized ????-hard combinatorial optimization problems. In this paper, we address the issue of embedding an approximate branch and bound algorithm into a local search framework. The resulting heuristic has been applied to the problem of finding a minimum makespan in the permutation flow shop problem. Computational experiments carried out on a large set of benchmark problems show that the proposed method consistently yields optimal or near-optimal solutions for instances with up to 200 jobs and 10 machines. In particular, for 19 instances, the heuristic produces solutions that outperform the best known ones.  相似文献   

7.
A study of mathematical programming approaches to time-tabling has resulted in the development of an algorithm based on Lagrangean relaxation embedded in a branch and bound procedure. The algorithm is still under development for larger scale problems, but this paper reports on its application to a more modest-sized problem based on published real data.  相似文献   

8.
We consider a problem of scheduling n independent jobs on m unrelated parallel machines with the objective of minimizing total tardiness. Processing times of a job on different machines may be different on unrelated parallel-machine scheduling problems. We develop several dominance properties and lower bounds for the problem, and suggest a branch and bound algorithm using them. Results of computational experiments show that the suggested algorithm gives optimal solutions for problems with up to five machines and 20 jobs in a reasonable amount of CPU time.  相似文献   

9.
Motivated by just-in-time manufacturing, we consider a single machine scheduling problem with dual criteria, i.e., the minimization of the total weighted earliness subject to minimum number of tardy jobs. We discuss several dominance properties of optimal solutions. We then develop a heuristic algorithm with time complexity O(n3) and a branch and bound algorithm to solve the problem. The computational experiments show that the heuristic algorithm is effective in terms of solution quality in many instances while the branch and bound algorithm is efficient for medium-size problems.  相似文献   

10.
We present a branch and bound algorithm for a two-machine re-entrant flowshop scheduling problem with the objective of minimizing total tardiness. In the re-entrant flowshop considered here, all jobs must be processed twice on each machine, that is, each job should be processed on machine 1, machine 2 and then machine 1 and machine 2. By regarding a job as a pair of sub-jobs, each of which represents a pass through the two machines, we develop dominance properties, a lower bound and heuristic algorithms for the problem, and use these to develop a branch and bound algorithm. For evaluation of the performance of the algorithms, computational experiments are performed on randomly generated test problems and results are reported. Results of the experiments show that the suggested branch and bound algorithm can solve problems with up to 20 sub-jobs in a reasonable amount of CPU time, and the average percentage gap of the heuristic solutions is about 13%.  相似文献   

11.
In this paper, we address some flaws in the material allocation function of Materials Requirements Planning (MRP). The problem formulation differs from standard MRP logic in certain important ways: start and finish times for orders are forced to be realistic and material allocations are made to minimize the total tardiness penalty associated with late completion. We show that the resulting MRP material allocation problem is NP-hard in the strong sense. A lower bound and a heuristic are developed from a mixed integer linear formulation and its Lagrangean relaxation. The lower bound and the heuristics are closer to the optimum in cases where there is either abundant material or considerable competition for material; in intermediate cases, small perturbations in material allocation can have a significant effect. A group of heuristics based on the MRP approach and its modifications is examined; they are optimal under certain conditions. An improvement method that preserves priorities inherent in any given starting solution is also presented. The Lagrangean heuristic performs better than the MRP based heuristics for a set of 3900 small problems, yielding solutions that are about 5% to 10% over the optimal. The best MRP based heuristic does about as well as the Lagrangean heuristic on a set of 120 larger problems, and is 25% to 40% better than the standard MRP approach, on the data sets tested.  相似文献   

12.
A new Lagrangean approach to the pooling problem   总被引:1,自引:0,他引:1  
We present a new Lagrangean approach for the pooling problem. The relaxation targets all nonlinear constraints, and results in a Lagrangean subproblem with a nonlinear objective function and linear constraints, that is reformulated as a linear mixed integer program. Besides being used to generate lower bounds, the subproblem solutions are exploited within Lagrangean heuristics to find feasible solutions. Valid cuts, derived from bilinear terms, are added to the subproblem to strengthen the Lagrangean bound and improve the quality of feasible solutions. The procedure is tested on a benchmark set of fifteen problems from the literature. The proposed bounds are found to outperform or equal earlier bounds from the literature on 14 out of 15 tested problems. Similarly, the Lagrangean heuristics outperform the VNS and MALT heuristics on 4 instances. Furthermore, the Lagrangean lower bound is equal to the global optimum for nine problems, and on average is 2.1% from the optimum. The Lagrangean heuristics, on the other hand, find the global solution for ten problems and on average are 0.043% from the optimum.  相似文献   

13.
This paper focuses on the single machine sequencing and common due-date assignment problem for the objective of minimizing the sum of the penalties associated with earliness, tardiness and due-date assignment. Unlike the previous research articles on this class of scheduling problem, we consider sequence-dependent setup times that make the problem much more difficult. To solve the problem, a branch and bound algorithm, which incorporates the method to obtain lower and upper bounds as well as a dominance property to reduce the search space, is suggested that gives the optimal solutions for small-sized instances. Heuristic algorithms are suggested to obtain solutions for large-sized problems within a reasonable computation time. The performances of both the optimal and heuristic algorithms, in computational experiments on randomly generated test instances, are reported.  相似文献   

14.
Each of n jobs is to be processed without interruption on a single machine. Each job becomes available for processing at time zero, has a deadline by which it must be completed and has a positive weight. The objective is to find a processing order of the jobs which minimizes the sum of weighted completion times. In this paper a branch and bound algorithm for the problem is presented which incorporates lower bounds that are obtained using a new technique called the multiplier adjustment method. Firstly several dominance conditions are derived. Then a heuristic is described and sufficient conditions for its optimality are given. The lower bound is obtained by performing a Lagrangean relaxation of the deadline constraints; the Lagrange multipliers are chosen so that the sequence generated by the heuristic is an optimal solution of the relaxed problem, thus yielding a lower bound. The algorithm is tested on problems with up to fifty jobs.  相似文献   

15.
This paper presents an efficient branch and bound algorithm for globally solving sum of geometric fractional functions under geometric constraints, which arise in various practical problems. By using an equivalent transformation and a new linear relaxation technique, a linear relaxation programming problem of the equivalent problem is obtained. The proposed algorithm is convergent to the global optimal solution by means of the subsequent solutions of a series of linear programming problems. Numerical results are reported to show the feasibility of our algorithm.  相似文献   

16.
为求线性比试和问题的全局最优解,本文给出了一个分支定界算法.通过一个等价问题和一个新的线性化松弛技巧,初始的非凸规划问题归结为一系列线性规划问题的求解.借助于这一系列线性规划问题的解,算法可收敛于初始非凸规划问题的最优解.算法的计算量主要是一些线性规划问题的求解.数值算例表明算法是切实可行的.  相似文献   

17.
单体型装配问题及其算法   总被引:1,自引:0,他引:1  
单核苷酸多态性(SNP)单体型装配问题就是从给定的来自某人染色体的SNP片段中去除错误,重构出尽可能与原来片段一致的单体型.这个问题有几个不同的模型最少片段去除(MFR)问题,最少SNP去除(MSR)问题以及最少错误纠正(MEC)问题.前两个问题的复杂性与算法已有一些学者研究过.第三个问题已被证明是NP完全问题,但这个问题的实际算法还没有.该文对MEC问题给出了一个分支定界算法,这个算法能得到问题的全局最优解.通过这个算法对实际数据的计算说明了MEC模型的合理性,即在一定条件下,通过修正最少的错误重构出的单体型确实是真实的单体型.由于分支定界算法对这样一个NP完全问题不能在可接受的时间内解规模较大的问题,文中又给出了求解MEC问题的两个基于动态聚类的算法,以便对规模较大的问题在可接受的时间内得到近似最优解.数值实际表明这两个算法很快,很有效.这两个算法总能得到与分支定界找到的全局最优解很接近的近似最优解.鉴于MEC问题是NP完全的,这两个算法是有效的、实际的算法.  相似文献   

18.
In this work we present a global optimization algorithm for solving a class of large-scale nonconvex optimization models that have a decomposable structure. Such models, which are very expensive to solve to global optimality, are frequently encountered in two-stage stochastic programming problems, engineering design, and also in planning and scheduling. A generic formulation and reformulation of the decomposable models is given. We propose a specialized deterministic branch-and-cut algorithm to solve these models to global optimality, wherein bounds on the global optimum are obtained by solving convex relaxations of these models with certain cuts added to them in order to tighten the relaxations. These cuts are based on the solutions of the sub-problems obtained by applying Lagrangean decomposition to the original nonconvex model. Numerical examples are presented to illustrate the effectiveness of the proposed method compared to available commercial global optimization solvers that are based on branch and bound methods.  相似文献   

19.
In this paper we consider the classical capacitated facility location problem. A branch and bound algorithm is presented which measurably improves upon the recent results of Akinc and Khumawala. The use of a specialized Lagrangean relaxation results in significantly tighter bounds than those for the traditional continuous relaxation. These bounds, when combined with penalties derived from the Lagrangean relaxation, enable many integer variables to be fixed at specific values. This results in fewer branches, and indeed for certain test problems taken from the literature, branching is not required. Average computation time for a battery of test problems from the literature has been reduced (conservatively) by a factor of 3.  相似文献   

20.
In 1970 Held and Karp introduced the Lagrangean approach to the symmetric traveling salesman problem. We use this 1-tree relaxation in a new branch and bound algorithm. It differs from other algorithms not only in the branching scheme, but also in the ascent method to calculate the 1-tree bounds. urthermore we determine heuristic solutions throughout the computations to provide upperbounds. We present computational results for both a depth-first and a breadth-first version of our algorithm. On the average our results on a number of Euclidean problems from the literature are obtained in about 60% less 1-trees than the best known algorithm based on the 1-tree relaxation. For random table problems (up to 100 cities) the average results are also satisfactory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号