首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The self‐assembly of peptide YYKLVFFC based on a fragment of the amyloid beta (Aβ) peptide, Aβ16–20, KLVFF has been studied in aqueous solution. The peptide is designed with multiple functional residues to examine the interplay between aromatic interactions and charge on the self‐assembly, as well as specific transformations such as the pH‐induced phenol–phenolate transition of the tyrosine residue. Circular dichroism (CD) and Fourier‐transform infrared (FTIR) spectroscopies are used to investigate the conditions for β‐sheet self‐assembly and the role of aromatic interactions in the CD spectrum as a function of pH and concentration. The formation of well‐defined fibrils at pH 4.7 is confirmed by cryo‐TEM (transmission electron microscope) and negative stain TEM. The morphology changes at higher pH, and aggregates of short twisted fibrils are observed at pH 11. Polarized optical microscopy shows birefringence at a low concentration (1 wt.‐%) of YYKLVFFC in aqueous solution, and small‐angle X‐ray scattering was used to probe nematic phase formation in more detail. A pH‐induced transition from nematic to isotropic phases is observed on increasing pH that appears to be correlated to a reduction in aggregate anisotropy upon increasing pH.

  相似文献   


2.
A series of pyrene/phenanthrene‐fused furan derivatives ( 1 – 8 ) were synthesized by a simple condensation reaction between pyrene‐4,5‐diketone/phenanthrenequinone and substituted phenol/naphthol in the presence of trifluoromethanesulfonic acid in 1,2‐dichlorobenzene heated at reflux. The formed compounds can emit strong blue light in organic solvents. Additionally, the self‐assembly behaviors of two of the compounds ( 3 and 5 ) were studied through re‐precipitation method and the resulting nanostructures were characterized by UV/Vis, fluorescence spectra, and field‐emission scanning electron microscopy (FESEM). The findings showed that the shape and size of compounds 3 and 5 could be tuned by the ratio of THF and hexadecyl trimethyl ammonium bromide (CTAB) solution in water.  相似文献   

3.
Owing to their versatility and biocompatibility, peptide‐based self‐assembled structures constitute valuable targets for complex functional designs. It is now shown that artificial capsules based on β‐barrel binding motifs can be obtained by means of dynamic covalent chemistry (DCC) and self‐assembly. Short peptides (up to tetrapeptides) are reversibly attached to resorcinarene scaffolds. Peptidic capsules are thus selectively formed in either a heterochiral or a homochiral way by simultaneous and spontaneous processes, involving chiral sorting, tautomerization, diastereoselective induction of inherent chirality, and chiral self‐assembly. Self‐assembly is shown to direct the regioselectivity of reversible chemical reactions. It is also responsible for shifting the tautomeric equilibrium for one of the homochiral capsules. Two different tautomers (keto‐enamine hemisphere and enol‐imine hemisphere) are observed in this capsule, allowing the structure to adapt for self‐assembly.  相似文献   

4.
Highly ordered supramolecular microfibers were constructed through a simple ionic self‐assembly strategy from complexes of the N‐tetradecyl‐N‐methylpyrrolidinium bromide (C14MPB) surface‐active ionic liquid and the small methyl orange (MO) dye molecule, with the aid of patent blue VF sodium salt. By using scanning electron microscopy and polarized optical microscopy, the width of these self‐assembled microfibers is observed to be about 1 to 5 μm and their length is from tens of micrometers to almost a millimeter. The 1H NMR spectra of the microfibers indicates that the supramolecular complexes are composed of C14MPB and MO in equal molar ratio. The electrostatic, hydrophobic, and π–π stacking interactions are regarded as the main driving forces for the formation of microfibers. Furthermore, through characterization by using confocal fluorescence microscopy, the microfibers were observed to show strong fluorescent properties and may find potential applications in many fields.  相似文献   

5.
The design of inhibitors of protein–protein interactions mediating amyloid self‐assembly is a major challenge mainly due to the dynamic nature of the involved structures and interfaces. Interactions of amyloidogenic polypeptides with other proteins are important modulators of self‐assembly. Here we present a hot‐segment‐linking approach to design a series of mimics of the IAPP cross‐amyloid interaction surface with Aβ (ISMs) as nanomolar inhibitors of amyloidogenesis and cytotoxicity of Aβ, IAPP, or both polypeptides. The nature of the linker determines ISM structure and inhibitory function including both potency and target selectivity. Importantly, ISMs effectively suppress both self‐ and cross‐seeded IAPP self‐assembly. Our results provide a novel class of highly potent peptide leads for targeting protein aggregation in Alzheimer’s disease, type 2 diabetes, or both diseases and a chemical approach to inhibit amyloid self‐assembly and pathogenic interactions of other proteins as well.  相似文献   

6.
Analytical methods that enable visualization of nanomaterials derived from solution self‐assembly processes in organic solvents are highly desirable. Herein, we demonstrate the use of stimulated emission depletion microscopy (STED) and single molecule localization microscopy (SMLM) to map living crystallization‐driven block copolymer (BCP) self‐assembly in organic media at the sub‐diffraction scale. Four different dyes were successfully used for single‐colour super‐resolution imaging of the BCP nanostructures allowing micelle length distributions to be determined in situ. Dual‐colour SMLM imaging was used to measure and compare the rate of addition of red fluorescent BCP to the termini of green fluorescent seed micelles to generate block comicelles. Although well‐established for aqueous systems, the results highlight the potential of super‐resolution microscopy techniques for the interrogation of self‐assembly processes in organic media.  相似文献   

7.
We demonstrate that the incorporation of one or two amino acids of phenylalanine (F) or 4‐fluoro phenylalanine (fF) will greatly lower the background fluorescence intensities of conventional quenched probes with quenchers. This enhanced quenching effect was due to the synergetic effect of the aggregation caused quenching and the presence of a quencher. Such strategy will not greatly affect the enzyme recognition properties to the probes. We also demonstrated that our self‐assembled nanoprobe with the enhanced quenching effect showed a better performance in cells for the detection of cell apoptosis than the unassembled probes. Our study demonstrates that using molecular self‐assembly can optimize and improve the performance of molecular probes and it provides a simple but very useful strategy to boost the signal‐to‐noise ratios of fluorescence probes.  相似文献   

8.
9.
Materials with Janus structures are attractive for wide applications in materials science. Although extensive efforts in the synthesis of Janus particles have been reported, the synthesis of sub‐10 nm Janus nanoparticles is still challenging. Herein, the synthesis of Janus gold nanoparticles (AuNPs) based on interface‐directed self‐assembly is reported. Polystyrene (PS) colloidal particles with AuNPs on the surface were prepared by interface‐directed self‐assembly, and the colloidal particles were used as templates for the synthesis of Janus AuNPs. To prepare colloidal particles, thiol‐terminated polystyrene (PS‐SH) was dissolved in toluene and citrate‐stabilized AuNPs were dispersed in aqueous solution. Upon mixing the two solutions, PS‐SH chains were grafted to the surface of AuNPs and amphiphilic AuNPs were formed at the liquid–liquid interface. PS colloidal particles decorated with AuNPs on the surfaces were prepared by adding the emulsion to excess methanol. On the surface, AuNPs were partially embedded in the colloidal particles. The outer regions of the AuNPs were exposed to the solution and were functionalized through the grafting of atom‐transfer radical polymerization (ATRP) initiator. Poly[2‐(dimethamino)ethyl methacrylate] (PDMAEMA) on AuNPs were prepared by surface‐initiated ATRP. After centrifugation and dissolving the colloidal particles in tetrahydrofuran (THF), Janus AuNPs with PS and PDMAEMA on two hemispheres were obtained. In acidic pH, Janus AuNPs are amphiphilic and are able to emulsify oil droplets in water; in basic pH, the Janus AuNPs are hydrophobic. In mixtures of THF/methanol at a volume ratio of 1:5, the Janus AuNPs self‐assemble into bilayer structures with collapsed PS in the interiors and solvated PDMAEMA at the exteriors of the structures.  相似文献   

10.
A great number of nano/microscaled morphologies have recently been prepared during the oxidation of aniline. At the early stage of oxidation, aniline oligomers are obtained, often in spectacular morphologies depending on reaction conditions. Herein, the flower‐like hierarchical architectures assembled from aniline oligomers by a template‐free method are reported. Their formation process is ascribed to the self‐assembly of oligoanilines through non‐covalent interactions, such as hydrogen bonding, hydrophobic forces, and π–π stacking. The model of directional growth is offered to explain the formation of petal‐like objects and, subsequently, flowers. In order to investigate the chemical structure of the oligomers, a series of characterizations have been carried out, such as matrix‐assisted laser desorption ionization, time‐of‐flight mass spectrometry, gas chromatography coupled with mass spectrometry analysis, X‐ray diffraction, and UV/Vis, Fourier‐transform infrared, and Raman spectroscopies. Based on the results of characterization methods, a formation mechanism for aniline oligomers and their self‐assembly is proposed.  相似文献   

11.
In this paper, self‐assembled polymeric toroids formed by a temperature‐driven process are reported. Rhodamine B (RhB) end‐capped poly(N‐isopropylacrylamide) (PNIPAAm) demonstrating a lower critical solution temperature (LCST) is prepared. In a two‐phase system, the polymer in the aqueous phase could move to the chloroform phase on raising the temperature above its LCST. This temperature‐driven process results in the formation of polymeric toroids in the chloroform phase, and the strategy affords a new pathway to toroidal self‐assembly of polymers. Moreover, the photoluminescent behavior of the RhB end‐capped PNIPAAm species formed by the process is also studied and discussed.

  相似文献   


12.
The biomolecule‐assisted self‐assembly of semiconductive molecules has been developed recently for the formation of potential bio‐based functional materials. Oligopeptide‐assisted self‐assembly of oligothiophene through weak intermolecular interactions was investigated; specifically the self‐assembly and chirality‐transfer behavior of achiral oligothiophenes in the presence of an oligopeptide with a strong tendency to form β‐sheets. Two kinds of oligothiophenes without (QT) or with (QTDA) carboxylic groups were selected to explore the effect of the end functional group on self‐assembly and chirality transfer. In both cases, organogels were formed. However, the assembly behavior of QT was quite different from that of QTDA. It was found that QT formed an organogel with the oligopeptide and co‐assembled into chiral nanostructures. Conversely, although QTDA also formed a gel with the oligopeptide, it has a strong tendency to self‐assemble independently. However, during the formation of the xerogel, the chirality of the oligopeptide can also be transferred to the QTDA assemblies. Different assembly models were proposed to explain the assembly behavior.  相似文献   

13.
This review focuses on recent developments in the self‐assembly of lead chalcogenide nanocrystals into two‐ and three‐dimensional superstructures. Self‐assembly is categorized by the shapes of building blocks, including nanospheres, nanocubes, nano‐octahedra, and nanostars. In the section on nanospheres, rapid assemblies of lead chalcogenide‐based multicomponent nanocrystals with additional components, such as semiconductors, noble metals, and magnetic nanocrystals, are further highlighted. In situ self‐assembly of lead chalcogenide nanocrystals into one‐dimensional nanostructures at elevated temperatures is also covered. Each section of this paper highlights examples extracted from recent publications. Finally, relatively novel properties and applications arising from lead chalcogenide superlattices as typical examples are also discussed.  相似文献   

14.
The self‐organization of multicomponent supramolecular systems involving a variety of two‐dimensional (2 D) polygons and three‐dimensional (3 D) cages is presented. Nine self‐organizing systems, SS1 – SS9 , have been studied. Each involves the simultaneous mixing of organoplatinum acceptors and pyridyl donors of varying geometry and their selective self‐assembly into three to four specific 2 D (rectangular, triangular, and rhomboid) and/or 3 D (triangular prism and distorted and nondistorted trigonal bipyramidal) supramolecules. The formation of these discrete structures is characterized using NMR spectroscopy and electrospray ionization mass spectrometry (ESI‐MS). In all cases, the self‐organization process is directed by: 1) the geometric information encoded within the molecular subunits and 2) a thermodynamically driven dynamic self‐correction process. The result is the selective self‐assembly of multiple discrete products from a randomly formed complex. The influence of key experimental variables ‐ temperature and solvent ‐ on the self‐correction process and the fidelity of the resulting self‐organization systems is also described.  相似文献   

15.
16.
17.
Folding in the tides : Upon hybridization, pyrene molecules assemble through interstrand stacking interactions to form double‐stranded, helical structures. Structural organization of the pyrene molecules is an intrinsic property of the oligoaryl part and takes place independently of the sequence of the attached DNA. Pyrene helicity is most pronounced in a bi‐segmental chimera, in which a DNA stem is present only at one end of the pyrene section.

  相似文献   


18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号