首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An intensive care nursery provides health care for critically ill newborn infants. During a typical shift, infants range from those needing only occasional care to those requiring constant attention. At the beginning of each shift, the head nurse groups the patients for assignment to staff nurses. Typically each nurse cares for one group of infants throughout the shift. The large variation in infant conditions along with several complicating side constraints makes it difficult to develop balanced nurse work loads. We develop a mathematical programming approach for achieving better workload balance. We first develop a detailed neonatal acuity system that quantifies the nursing workload of each patient. We then develop an integer linear program that assigns patients to nurses while balancing nurse workloads. Because this model is computationally intractable, we develop a heuristic that exploits the fact that most nurseries are divided into a number of physical zones. We use ten case studies taken from a major university hospital to benchmark the performance of this heuristic. We also perform a designed experiment using randomly generated problems that examines the effect of nursery parameters on heuristic performance.  相似文献   

2.
A very frequent problem in advanced mathematical programming models is the linear approximation of convex and non-convex non-linear functions in either the constraints or the objective function of an otherwise linear programming problem. In this paper, based on a model that has been developed for the evaluation and selection of pollutant emission control policies and standards, we shall study several ways of representing non-linear functions of a single argument in mixed integer, separable and related programming terms. Thus we shall study the approximations based on piecewise constant, piecewise adjacent, piecewise non-adjacent additional and piecewise non-adjacent segmented functions. In each type of modelization we show the problem size and optimization results of using the following techniques: separable programming, mixed integer programming with Special Ordered Sets of type 1, linear programming with Special Ordered Sets of type 2 and mixed integer programming using strategies based on the quasi-integrality of the binary variables.  相似文献   

3.
Constraint integer programming (CIP) is a novel paradigm which integrates constraint programming (CP), mixed integer programming (MIP), and satisfiability (SAT) modeling and solving techniques. In this paper we discuss the software framework and solver SCIP (Solving Constraint Integer Programs), which is free for academic and non-commercial use and can be downloaded in source code. This paper gives an overview of the main design concepts of SCIP and how it can be used to solve constraint integer programs. To illustrate the performance and flexibility of SCIP, we apply it to two different problem classes. First, we consider mixed integer programming and show by computational experiments that SCIP is almost competitive to specialized commercial MIP solvers, even though SCIP supports the more general constraint integer programming paradigm. We develop new ingredients that improve current MIP solving technology. As a second application, we employ SCIP to solve chip design verification problems as they arise in the logic design of integrated circuits. This application goes far beyond traditional MIP solving, as it includes several highly non-linear constraints, which can be handled nicely within the constraint integer programming framework. We show anecdotally how the different solving techniques from MIP, CP, and SAT work together inside SCIP to deal with such constraint classes. Finally, experimental results show that our approach outperforms current state-of-the-art techniques for proving the validity of properties on circuits containing arithmetic.   相似文献   

4.
We present branching-on-hyperplane methods for solving mixed integer linear and mixed integer convex programs. In particular, we formulate the problem of finding a good branching hyperplane using a novel concept of adjoint lattice. We also reformulate the problem of rounding a continuous solution to a mixed integer solution. A worst case complexity of a Lenstra-type algorithm is established using an approximate log-barrier center to obtain an ellipsoidal rounding of the feasible set. The results for the mixed integer convex programming also establish a complexity result for the mixed integer second order cone programming and mixed integer semidefinite programming feasibility problems as a special case. Our results motivate an alternative reformulation technique and a branching heuristic using a generalized (e.g., ellipsoidal) norm reduced basis available at the root node.  相似文献   

5.
In this paper we provide evidence of the benefits of an approach which combines data mining and mathematical programming to determining the premium to charge automobile insurance policy holders in order to arrive at an optimal portfolio. An non-linear integer programming formulation is proposed to determine optimal premiums based on the insurer's need to find a balance between profitability and market share. The non-linear integer programming approach to solving this problem is used within a data mining framework which consists of three components: classifying policy holders into homogenous risk groups and predicting the claim cost of each group using k-means clustering; determining the price sensitivity (propensity to pay) of each group using neural networks; and combining the results of the first two components to determine the optimal premium to charge. We have earlier presented the results of the first two components. In this paper we present the results of the third component. Using our approach, we have been able to increase revenue without affecting termination rates and market share.  相似文献   

6.
We consider the identification of a switched linear system which consists of linear sub-models, with a rule that orchestrates the switching mechanism between the sub-models. Taking a set of switched linear systems and using a state space framework, we show that it is possible to combine subspace methods with mixed integer programming for system identification. The states of the system are first extracted from input–output data using sub-space methods. Once the state variables are known, the switched system is re-written as a mixed logical dynamical (MLD) system and the model parameters are calculated for via mixed integer programming. We report an example at the end of this paper together with simulation results in the presence of noise.  相似文献   

7.
Description of 2-integer continuous knapsack polyhedra   总被引:1,自引:0,他引:1  
In this paper we discuss the polyhedral structure of several mixed integer sets involving two integer variables. We show that the number of the corresponding facet-defining inequalities is polynomial on the size of the input data and their coefficients can also be computed in polynomial time using a known algorithm [D. Hirschberg, C. Wong, A polynomial-time algorithm for the knapsack problem with two variables, Journal of the Association for Computing Machinery 23 (1) (1976) 147–154] for the two integer knapsack problem. These mixed integer sets may arise as substructures of more complex mixed integer sets that model the feasible solutions of real application problems.  相似文献   

8.
We consider a class of non-linear mixed integer programs with n integer variables and k continuous variables. Solving instances from this class to optimality is an NP-hard problem. We show that for the cases with k=1 and k=2, every optimal solution is integral. In contrast to this, for every k≥3 there exist instances where every optimal solution takes non-integral values. Received: August 2001 / Accepted: January 2002?Published online March 27, 2002  相似文献   

9.
基于供应商选择问题的动态性和模糊性,考虑在每个周期内生产商的需求能力及供应商的供应能力为模糊变量,本文将一个多阶段多商品多渠道的供应商选择问题视为一个0-1混合整数模糊动态非线性规划问题,目标函数为总成本最小化。然后建立了0-1混合整数模糊动态非线性规划模型。为了求解该模型,通过可信性理论把模型中模糊机会约束清晰化,将该模型转化为一个确定型的0-1混合整数动态非线性规划模型。最后给出了一个数值算例验证了模型的可行性。  相似文献   

10.
In this paper, we propose an optimisation model to determine the product assortment, inventory replenishment, display area and shelf space allocation decisions that jointly maximize the retailer’s profit under shelf space and backroom storage constraints. The variety of products to be displayed in the retail store, their display locations within the store, their ordering quantities, and the allocated shelf space in each display area are considered as decision variables to be determined by the proposed integrated model. In the model formulation, we include the inventory investment costs, which are proportional to the average inventory, and storage and display costs as components of the inventory costs and make a clear distinction between showroom and backroom inventories. We also consider the effect of the display area location on the item demand. The developed model is a mixed integer non-linear program that we solved using LINGO software. Numerical examples are used to illustrate the developed model.  相似文献   

11.
The n-step mixed integer rounding (MIR) inequalities of Kianfar and Fathi (Math Program 120(2):313–346, 2009) are valid inequalities for the mixed-integer knapsack set that are derived by using periodic n-step MIR functions and define facets for group problems. The mingling and 2-step mingling inequalities of Atamtürk and Günlük (Math Program 123(2):315–338, 2010) are also derived based on MIR and they incorporate upper bounds on the integer variables. It has been shown that these inequalities are facet-defining for the mixed integer knapsack set under certain conditions and generalize several well-known valid inequalities. In this paper, we introduce new classes of valid inequalities for the mixed-integer knapsack set with bounded integer variables, which we call n-step mingling inequalities (for positive integer n). These inequalities incorporate upper bounds on integer variables into n-step MIR and, therefore, unify the concepts of n-step MIR and mingling in a single class of inequalities. Furthermore, we show that for each n, the n-step mingling inequality defines a facet for the mixed integer knapsack set under certain conditions. For n?=?2, we extend the results of Atamtürk and Günlük on facet-defining properties of 2-step mingling inequalities. For n ≥ 3, we present new facets for the mixed integer knapsack set. As a special case we also derive conditions under which the n-step MIR inequalities define facets for the mixed integer knapsack set. In addition, we show that n-step mingling can be used to generate new valid inequalities and facets based on covers and packs defined for mixed integer knapsack sets.  相似文献   

12.
In this paper an integer, non-linear mathematical programming model is developed to allocate emergency medical service (EMS) ambulances to sectors within a county in order to meet a government-mandated response-time criterion. However, in addition to the response-time criterion, the model also reflects criteria for budget and work-load, and, since ambulance response is best described within the context of a queueing system, several of the model system constraints are based on queueing formulations adapted to a mathematical programming format. The model is developed and demonstrated within the context of an example of a county encompassing rural, urban and mixed sectors which exhibit different demand and geographic characteristics. The example model is solved using an integer, non-linear goal-programming technique. The solution results provide ambulance allocations to sectors within the county, the probability of an ambulance exceeding a prespecified response time, and the utilization factor for ambulances per sector.  相似文献   

13.
A tight continuous relaxation is a crucial factor in solving mixed integer formulations of many NP-hard combinatorial optimization problems. The (weighted) max k-cut problem is a fundamental combinatorial optimization problem with multiple notorious mixed integer optimization formulations. In this paper, we explore four existing mixed integer optimization formulations of the max k-cut problem. Specifically, we show that the continuous relaxation of a binary quadratic optimization formulation of the problem is: (i) stronger than the continuous relaxation of two mixed integer linear optimization formulations and (ii) at least as strong as the continuous relaxation of a mixed integer semidefinite optimization formulation. We also conduct a set of experiments on multiple sets of instances of the max k-cut problem using state-of-the-art solvers that empirically confirm the theoretical results in item (i). Furthermore, these numerical results illustrate the advances in the efficiency of global non-convex quadratic optimization solvers and more general mixed integer nonlinear optimization solvers. As a result, these solvers provide a promising option to solve combinatorial optimization problems. Our codes and data are available on GitHub.  相似文献   

14.
We consider discrete bilevel optimization problems where the follower solves an integer program with a fixed number of variables. Using recent results in parametric integer programming, we present polynomial time algorithms for pure and mixed integer bilevel problems. For the mixed integer case where the leader’s variables are continuous, our algorithm also detects whether the infimum cost fails to be attained, a difficulty that has been identified but not directly addressed in the literature. In this case, it yields a “better than fully polynomial time” approximation scheme with running time polynomial in the logarithm of the absolute precision. For the pure integer case where the leader’s variables are integer, and hence optimal solutions are guaranteed to exist, we present an algorithm which runs in polynomial time when the total number of variables is fixed.  相似文献   

15.
In the present paper we investigate optimal continuous algorithms in n-term approximation based on various non-linear n-widths, and n-term approximation by the dictionary V formed from the integer translates of the mixed dyadic scales of the tensor product multivariate de la Vallée Poussin kernel, for the unit ball of Sobolev and Besov spaces of functions with common mixed smoothness. The asymptotic orders of these quantities are given. For each space the asymptotic orders of non-linear n-widths and n-term approximation coincide. Moreover, these asymptotic orders are achieved by a continuous algorithm of n-term approximation by V, which is explicitly constructed.  相似文献   

16.
This paper presents a solution method for the general (mixed integer) parametric linear complementarity problem pLCP(q(θ),M), where the matrix M has a general structure and integrality restriction can be enforced on the solution. Based on the equivalence between the linear complementarity problem and mixed integer feasibility problem, we propose a mixed integer programming formulation with an objective of finding the minimum 1-norm solution for the original linear complementarity problem. The parametric linear complementarity problem is then formulated as multiparametric mixed integer programming problem, which is solved using a multiparametric programming algorithm. The proposed method is illustrated through a number of examples.  相似文献   

17.
We study several ways of obtaining valid inequalities for mixed integer programs. We show how inequalities obtained from a disjunctive argument can be represented by superadditive functions and we show how the superadditive inequalities relate to Gomory's mixed integer cuts. We also show how all valid inequalities for mixed 0–1 programs can be generated recursively from a simple subclass of the disjunctive inequalities.The research of this author was supported by NSF Contract No. ECS-8540898.  相似文献   

18.
We present a generalization of the mixed integer rounding (MIR) approach for generating valid inequalities for (mixed) integer programming (MIP) problems. For any positive integer n, we develop n facets for a certain (n + 1)-dimensional single-constraint polyhedron in a sequential manner. We then show that for any n, the last of these facets (which we call the n-step MIR facet) can be used to generate a family of valid inequalities for the feasible set of a general (mixed) IP constraint, which we refer to as the n-step MIR inequalities. The Gomory Mixed Integer Cut and the 2-step MIR inequality of Dash and günlük  (Math Program 105(1):29–53, 2006) are the first two families corresponding to n = 1,2, respectively. The n-step MIR inequalities are easily produced using periodic functions which we refer to as the n-step MIR functions. None of these functions dominates the other on its whole period. Finally, we prove that the n-step MIR inequalities generate two-slope facets for the infinite group polyhedra, and hence are potentially strong.   相似文献   

19.
We consider maximin and minimax nonlinear mixed integer programming problems which are nonsymmetric in duality sense. Under weaker (pseudo-convex/pseudo-concave) assumptions, we show that the supremum infimum of the maximin problem is greater than or equal to the infimum supremum of the minimax problem. As a particular case, this result reduces to the weak duality theorem for minimax and symmetric dual nonlinear mixed integer programming problems. Further, this is used to generalize available results on minimax and symmetric duality in nonlinear mixed integer programming.  相似文献   

20.
We propose a mixed integer non-linear goal programming model for replenishment planning and space allocation in a supermarket in which some constraints on budget, space, holding times of perishable items, and number of replenishments are considered and weighted deviations from two conflicting objectives, namely profitability and customer service level, are minimized. We apply a minimum–maximum approach to introduce demand where the maximum demand is a function of price change and allocated space. Each item is presented in the form of multiple brands, probably exposed to price changes, competing to obtain more space. In addition to inventory investment costs, replenishment costs, and inventory holding costs we also include costs related to non-productive use of space. The order quantity, the amount of allocated showroom and backroom spaces, and the cycle time of joint replenishments are key decision variables. We also propose an extended model in which price is a decision variable. Finally we solve the model using LINGO software and provide computational results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号