首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The self‐assembly of triazole amphiphiles was examined in solution, the solid state, and in bilayer membranes. Single‐crystal X‐ray diffraction experiments show that stacked protonated triazole quartets (T4) are stabilized by multiple strong interactions with two anions. Hydrogen bonding/ion pairing of the anions are combined with anion–π recognition to produce columnar architectures. In bilayer membranes, low transport activity is observed when the T4 channels are operated as H+/X? translocators, but higher transport activity is observed for X? in the presence of the K+‐carrier valinomycin. These self‐assembled superstructures, presenting intriguing structural behaviors such as directionality, and strong anion encapsulation by hydrogen bonding supported by vicinal anion–π interactions can serve as artificial supramolecular channels for transporting anions across lipid bilayer membranes.  相似文献   

2.
Molecular clip 1 remains monomeric in water and engages in host–guest recognition processes with suitable guests. We report the Ka values for 32 1? guest complexes measured by 1H NMR, UV/Vis, and fluorescence titrations. The cavity of 1 is shaped by aromatic surfaces of negative electrostatic potential and therefore displays high affinity and selectivity for planar and cationic aromatic guests that distinguishes it from CB[n] receptors that prefer aliphatic over aromatic guests. Electrostatic effects play a dominant role in the recognition process whereby ion–dipole interactions may occur between ammonium ions and the C=O groups of 1 , between the SO3? groups of 1 and pendant cationic groups on the guest, and within the cavity of 1 by cation–π interactions. Host 1 displays a high affinity toward dicationic guests with large planar aromatic surfaces (e.g. naphthalene diimide NDI+ and perylene diimide PDI+) and cationic dyes derived from acridine (e.g. methylene blue and azure A). The critical importance of cation–π interactions was ascertained by a comparison of analogous neutral and cationic guests (e.g. methylene violet vs. methylene blue; quinoline vs. N‐methylquinolinium; acridine vs. N‐methylacridinium; neutral red vs. neutral red H+) the affinities of which differ by up to 380‐fold. We demonstrate that the high affinity of 1 toward methylene blue (Ka=3.92×107 m ?1; Kd=25 nm ) allows for the selective sequestration and destaining of U87 cells stained with methylene blue.  相似文献   

3.
Several bis(triazolium)‐based receptors have been synthesized as chemosensors for anion recognition. The central naphthalene core features two aryltriazolium side‐arms. NMR experiments revealed differences between the binding modes of the two triazolium rings: one triazolium ring acts as a hydrogen‐bond donor, the other as an anion–π receptor. Receptors 92+?2BF4 ? (C6H5), 112+?2BF4 ? (4‐NO2?C6H4), and 132+?2BF4? (ferrocenyl) bind HP2O73? anions in a mixed‐binding mode that features a combination of hydrogen‐bonding and anion–π interactions and results in strong binding. On the other hand, receptor 102+?2 BF4 ? (4‐CH3O?C6H4) only displays combined Csp2?H/anion–π interactions between the two arms of the receptors and the bound anion rather than triazolium (CH)+???anion hydrogen bonding. All receptors undergo a downfield shift of the triazolium protons, as well as the inner naphthalene protons, in the presence of H2PO4? anions. That suggests that only hydrogen‐bonding interactions exist between the binding site and the bound anion, and involve a combination of cationic (triazolium) and neutral (naphthalene) C?H donor interactions. Theoretical calculations relate the electronic structure of the substituent on the aromatic group with the interaction energies and provide a minimum‐energy conformation for all the complexes that explains their measured properties.  相似文献   

4.
Manipulation of the emerging anion–π interactions in a highly cooperative manner through sophisticated host design represents a very challenging task. In this work, unprecedented tetrahedral anion–π receptors have been successfully constructed for complementary accommodation of tetrahedral and relevant anions. The synthesis was achieved by a macrocycle-directed approach by using large macrocycle precursors bearing four reactive sites, which enabled a kinetic-favored pathway and afforded the otherwise inaccessible tetrahedral cages in considerable yields. Crystal structure suggested that the tetrahedral cages have an enclosed three-dimensional cavity surrounded by four electron-deficient triazine faces in a tetrahedral array. The complementary accommodation of a series of tetrahedral and relevant anions including BF4, ClO4, H2PO4, HSO4, SO42− and PF6 was revealed by ESI-MS and DFT calculations. Crystal structures of ClO4 and PF6 complexes showed that the anion was nicely encapsulated within the tetrahedral cavity with up to quadruple cooperative anion–π interactions by an excellent shape and size match. The strong anion–π binding was further confirmed by negative ion photoelectron spectroscopy measurements.  相似文献   

5.
Anion–π interactions generally exist between an anion and an electron‐deficient π‐ring because of the electron‐accepting character of the ring. In this paper, we report orbital effect‐induced anomalous binding between electron‐rich π systems and F? through anion–π interactions calculated at the MP2/6‐31+G(d,p) and ωB97X‐D/6‐31+G(d,p) levels of theory. We find that anion–π interactions between F? and electron‐rich π rings increase markedly with increasing number of π electrons and size of the π rings. This is contrary to intuition because anion–π interactions would be expected to gradually decrease because of gradually increasing Coulombic repulsion between the negative charge of the anions and gradually increasing number of π electrons of the aromatic surfaces. Energy decomposition analysis showed that the key to this anomalous effect is the more effective delocalization of negative charge to the unoccupied π* orbitals of larger π rings, which is termed an “orbital effect”.  相似文献   

6.
Interactions of anions with simple aromatic compounds have received growing attention due to their relevancy in various fields. Yet, the anion–π interactions are generally very weak, for example, there is no favorable anion–π interaction for the halide anion F? on the simplest benzene surface unless the H‐atoms are substituted by the highly negatively charged F. In this article, we report a type of particularly strong anion–π interactions by investigating the adsorptions of three halide anions, that is, F?, Cl?, and Br?, on the hydrogenated‐graphene flake using the density functional theory. The anion–π interactions on the graphene flake are shown to be unexpectedly strong compared to those on simple aromatic compounds, for example, the F?‐adsorption energy is as large as 17.5 kcal/mol on a graphene flake (C84H24) and 23.5 kcal/mol in the periodic boundary condition model calculations on a graphene flake C113 (the supercell containing a F? ion and 113 carbon atoms). The unexpectedly large adsorption energies of the halide anions on the graphene flake are ascribed to the effective donor–acceptor interactions between the halide anions and the graphene flake. These findings on the presence of very strong anion–π interactions between halide ions and the graphene flake, which are disclosed for the first time, are hoped to strengthen scientific understanding of the chemical and physical characteristics of the graphene in an electrolyte solution. These favorable interactions of anions with electron‐deficient graphene flakes may be applicable to the design of a new family of neutral anion receptors and detectors. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
We report the synthesis and X‐ray characterization of the N6‐benzyl‐N6‐methyladenine ligand (L) and three metal complexes, namely [Zn(HL)Cl3]·H2O ( 1 ), [Cd(HL)2Cl4] ( 2 ) and [H2L]2[Cd3(μ‐L)2(μ‐Cl)4Cl6]·3H2O ( 3 ). Complex 1 consists of the 7H‐adenine tautomer protonated at N3 and coordinated to a tetrahedral Zn(II) metal centre through N9. The octahedral Cd(II) in complex 2 is N9‐coordinated to two N6‐benzyl‐N6‐methyladeninium ligands (7H‐tautomer protonated at N3) that occupy apical positions and four chlorido ligands form the basal plane. Compound 3 corresponds to a trinuclear Cd(II) complex, where the central Cd atom is six‐coordinated to two bridging μ‐L and four bridging μ‐Cl ligands. The other two Cd atoms are six‐coordinated to three terminal chlorido ligands, to two bridging μ‐Cl ligands and to the bridging μ‐L through N3. Essentially, the coordination patterns, degree of protonation and tautomeric forms of the nucleobase dominate the solid‐state architectures of 1 – 3 . Additionally, the hydrogen‐bonding interactions produced by the endocyclic N atoms and NH groups stabilize high‐dimensional‐order supramolecular assemblies. Moreover, energetically strong anion–π and lone pair (lp)–π interactions are important in constructing the final solid‐state architectures in 1 – 3 . We have studied the non‐covalent interactions energetically using density functional theory calculations and rationalized the interactions using molecular electrostatic potential surfaces and Bader's theory of atoms in molecules. We have particularly analysed cooperative lp–π and anion–π interactions in 1 and π+–π+ interactions in 3 .  相似文献   

8.
Anion–π interactions have been widely studied as new noncovalent driving forces in supramolecular chemistry. However, self‐assembly induced by anion–π interactions is still largely unexplored. Herein we report the formation of supramolecular amphiphiles through anion–π interactions, and the subsequent formation of self‐assembled vesicles in water. With the π receptor 1 as the host and anionic amphiphiles, such as sodium dodecylsulfate (SDS), sodium laurate (SLA), and sodium methyl dodecylphosphonate (SDP), as guests, the sequential formation of host–guest supramolecular amphiphiles and self‐assembled vesicles was demonstrated by SEM, TEM, DLS, and XRD techniques. The intrinsic anion–π interactions between 1 and the anionic amphiphiles were confirmed by crystal diffraction, HRMS analysis, and DFT calculations. Furthermore, the controlled disassembly of the vesicles was promoted by competing anions, such as NO3?, Cl?, and Br?, or by changing the pH value of the medium.  相似文献   

9.
Assuming various ionic states in ionic liquids (ILs) are in equilibrium with exchange rates too high to be distinguished by NMR experiments and the overall response of measured diffusivity is viewed as the sum of weighted responses of diffusivity of all possible components, the ratio of cation diffusivity to anion diffusivity, D+/D?, in a specified IL affords the physical meaning: relative association degrees observed by anion‐containing components to cation‐containing components. These values decrease with increasing temperature showing the equilibrium between ionic states shifting to smaller components. In the neat 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMI‐PF6), (BMI‐PF6)nPF6? anions are found preferred to (BMI‐PF6)nBMI+ cations and this phenomenon is termed as hyper anion preference (HAP). The counterpart statement, “isolated BMI+Cations Are More than Isolated PF6? Anions in the Room Temperature in the BMI‐PF6 Ionic Liquid” is employed as the research title. The HAP approach can be employed to explain the temperature‐dependent values of D+/D? obtained for BMI‐PF6/2,2,2‐trifluoroethane (TFE) mixtures at two different compositions (χTFE = 0.65 and 0.80). More significantly, this argument can rationalize numerous physical properties published for this IL: (1) higher sensitive of anionic diffusivity towards temperatures than cationic diffusivity, (2) temperature‐dependent cationic transference number, (3) low anionic donicity and high ionicity and (4) high viscosity.  相似文献   

10.
Currently, main‐group metal cations are totally neglected as the structure‐building blocks for the self‐assembly of supramolecular coordination metallocages due to the lack of directional bonding. However, here we show that a common Arrhenius acid–base neutralization allows the alkaline‐earth metal cations to act as charged binders, easily connecting two or more highly directional anionic transition‐metal‐based metalloligands to coordination polymers. With a metal salt such as K+PF6? added during the neutralization, the main‐group metal‐connected skeleton can be templated by the largest yet reported ionic‐aggregate anion, K2(PF6)3?, formed from KPF6 in solution, into molecular metallocages, encapsulating the ion. Crystal‐structure details, DFT‐calculation results, and controlled‐release behavior support the presence of K2(PF6)3? as a guest in the cage. Upon removal of PF6? ions, the cage stays intact. Other ions like BF4? can be put back in.  相似文献   

11.
The structure and diffusion behavior of 1‐butyl‐3‐methylimidazolium ([bmim]+) ionic liquids with [Cl]?, [PF6]?, and [Tf2N]? counterions near a hydrophobic graphite surface are investigated by molecular dynamics simulation over the temperature range of 300–800 K. Near the graphite surface the structure of the ionic liquid differs from that in the bulk and it forms a well‐ordered region extending over 30 Å from the surface. The bottom layer of the ionic liquid is stable over the investigated temperature range due to the inherent slow dynamics of the ionic liquid and the strong Coulombic interactions between cation and anion. In the bottom layer, diffusion is strongly anisotropic and predominantly occurs along the graphite surface. Diffusion perpendicular to the interface (interfacial mass transfer rate kt) is very slow due to strong ion–substrate interaction. The diffusion behaviors of the three ionic liquids in the two directions all follow an Arrhenius relation, and the activation barrier increases with decreasing anion size. Such an Arrhenius relation is applied to surface‐adsorbed ionic liquids for the first time. The ion size and the surface electrical charge density of the anions are the major factors determining the diffusion behavior of the ionic liquid adjacent to the graphite surface.  相似文献   

12.
Cationic coordinatively saturated complexes of ruthenium(II), [Ru(o‐C6H4‐2‐py)(phen)(MeCN)2]+, bearing different counterions of PF6? and Cl? have been used in the radical polymerization of 2‐hydroxyethyl methacrylate in protic media and acetone under homogeneous conditions. Exchange of PF6? by Cl? increases the solubility of the complex in water. Both complexes led to the fast polymerization under mild conditions, but control was achieved only in methanol and acetone and was better for the complex with Cl?. The polymerization accelerated in aqueous media and proceeded to a high conversion even with a monomer/catalyst = 2000/1, but without control. Polymerization mediated by complex bearing Cl? was slower in protic solvents but faster in acetone and always resulted in lower molecular weight polymers. Thus, the nature of the anion strongly affected the catalytic activity of the complexes and may serve as way of fine‐tuning the catalytic properties. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
It is well known that alkynes act as π‐acids in the formation of complexes with metals. We found unprecedented attractive Au–π interactions in diacetylene‐modified [core+exo]‐type [Au8]4+ clusters. The 4‐phenyl‐1,3‐butadiynyl‐modified cluster has unusually short Au–Cα distances in the crystal structure, revealing the presence of attractive interactions between the coordinating C≡C moieties and the neighboring bitetrahedral Au6 core, which is further supported by IR and NMR spectra. Such weak interactions are not found in mono‐acetylene‐modified clusters, which indicates that they are specific for diacetylenic ligands. The attractive Au–π interactions are likely associated with the low energy of the π* orbital in the diacetylenic moieties, into which the valence electrons of the gold core may be back donated. The [Au8]4+ clusters show clear red‐shifts of >10 nm with respect to the corresponding mono‐acetylenic clusters in UV/Vis absorption bands, which indicates substantial electronic perturbation effects of the Au–π interactions.  相似文献   

14.
Of central importance in chemistry and biology, enolate chemistry is an attractive topic to elaborate on possible contributions of anion–π interactions to catalysis. To demonstrate the existence of such contributions, experimental evidence for the stabilization of not only anions but also anionic intermediates and transition states on π‐acidic aromatic surfaces is decisive. To tackle this challenge for enolate chemistry with maximal precision and minimal uncertainty, malonate dilactones are covalently positioned on the π‐acidic surface of naphthalenediimides (NDIs). Their presence is directly visible in the upfield shifts of the α‐protons in the 1H NMR spectra. The reactivity of these protons on π‐acidic surfaces is measured by hydrogen–deuterium (H–D) exchange for 11 different examples, excluding controls. The velocity of H–D exchange increases with π acidity (NDI core substituents: SO2R>SOR>H>OR>OR/NR2>SR>NR2). The H–D exchange kinetics vary with the structure of the enolate (malonates>methylmalonates, dilactones>dithiolactones). Moreover, they depend on the distance to the π surface (bridge length: 11–13 atoms). Most importantly, H–D exchange depends strongly on the chirality of the π surface (chiral sulfoxides as core substituents; the crystal structure of the enantiopure (R,R,P)‐macrocycle is reported). For maximal π acidity, transition‐state stabilizations up to ?18.8 kJ mol?1 are obtained for H–D exchange. The Brønsted acidity of the enols increases strongly with π acidity of the aromatic surface, the lowest measured pKa=10.9 calculates to a ΔpKa=?5.5. Corresponding to the deprotonation of arginine residues in neutral water, considered as “impossible” in biology, the found enolate–π interactions are very important. The strong dependence of enolate stabilization on the unprecedented seven‐component π‐acidity gradient over almost 1 eV demonstrates quantitatively that such important anion–π activities can be expected only from strong enough π acids.  相似文献   

15.
Understanding the effects of intermolecular interactions on metal‐to‐metal charge transfer (MMCT) is crucial to develop molecular devices by grafting MMCT‐based molecular arrays. Herein, we report a series of solvent‐free {Fe2Co2} compounds sharing the same cationic tetranuclear {[Fe(PzTp)(CN)3]2[Co(dpq)2]2}2+ (PzTp?=tetrakis(pyrazolyl)borate, dpq=dipyrido[3,2‐d:2′,3′‐f]quinoxaline) square units but having anions with different size, including BF4?, PF6?, OTf?, and [Fe(PzTp)(CN)3]?. Intermolecular π???π interactions between dpq ligands, which coordinate to cobalt ions in the {[Fe(PzTp)(CN)3]2[Co(dpq)2]2}2+ units, can be modulated by introducing different counterions, regulating the distortion of the CoN6 octahedron and ligand field around the cobalt ions. This change results in different MMCT behavior. Computational analyzes reveal the substantial role of the intermolecular interactions tuned by the presence of different counteranions on the MMCT behavior.  相似文献   

16.
Molecular ferroelectrics have displayed a promising future since they are light‐weight, flexible, environmentally friendly and easily synthesized, compared to traditional inorganic ferroelectrics. However, how to precisely design a molecular ferroelectric from a non‐ferroelectric phase transition molecular system is still a great challenge. Here we designed and constructed a molecular ferroelectric by double regulation of the anion and cation in a simple crown ether clathrate, 4 , [K(18‐crown‐6)]+[PF6]?. By replacing K+ and PF6? with H3O+ and [FeCl4]? respectively, we obtained a new molecular ferroelectric [H3O(18‐crown‐6)]+[FeCl4]?, 1 . Compound 1 undergoes a para‐ferroelectric phase transition near 350 K with symmetry change from P21/n to the Pmc21 space group. X‐ray single‐crystal diffraction analysis suggests that the phase transition was mainly triggered by the displacement motion of H3O+ and [FeCl4]? ions and twist motion of 18‐crown‐6 molecule. Strikingly, compound 1 shows high a Curie temperature (350 K), ultra‐strong second harmonic generation signals (nearly 8 times of KDP), remarkable dielectric switching effect and large spontaneous polarization. We believe that this research will pave the way to design and build high‐quality molecular ferroelectrics as well as their application in smart materials.  相似文献   

17.
We report a significant decrease in turn‐on times of light‐emitting electrochemical cells (LECs) by tethering imidazolium moieties onto a cationic Ir complex. The introduction of two imidazolium groups at the ends of the two alkyl side chains of [Ir(ppy)2(dC6‐daf)]+(PF6)? (ppy=2‐phenylpyridine, dC6‐daf=9,9′‐dihexyl‐4,5‐diazafluorene) gave the complex [Ir(ppy)2(dC6MIM‐daf)]3+[(PF6)?]3 (dC6MIM‐daf=9,9‐bis[6‐(3‐methylimidazolium)hexyl]‐1‐yl‐4,5‐diazafluorene). Both complexes exhibited similar photoluminescent/electrochemical properties and comparable electroluminescent efficiencies. The turn‐on times of the LECs based on the latter complex, however, were much lower than those of devices based on the former. The improvement is ascribed to increased concentrations of mobile counterions ((PF6)?) in the neat films and a consequent increase in neat‐film ionic conductivity. These results demonstrate that the technique is useful for molecular modifications of ionic transition‐metal complexes (ITMCs) to improve the turn‐on times of LECs and to realize single‐component ITMC LECs compatible with simple driving schemes.  相似文献   

18.
The combination of a pyrenyl tetraamine with an isophthaloyl spacer has led to two new water‐soluble carbohydrate receptors (“synthetic lectins”). Both systems show outstanding affinities for derivatives of N‐acetylglucosamine (GlcNAc) in aqueous solution. One receptor binds the methyl glycoside GlcNAc‐β‐OMe with Ka≈20 000 m ?1, whereas the other one binds an O‐GlcNAcylated peptide with Ka≈70 000 m ?1. These values substantially exceed those usually measured for GlcNAc‐binding lectins. Slow exchange on the NMR timescale enabled structural determinations for several complexes. As expected, the carbohydrate units are sandwiched between the pyrenes, with the alkoxy and NHAc groups emerging at the sides. The high affinity of the GlcNAcyl–peptide complex can be explained by extra‐cavity interactions, raising the possibility of a family of complementary receptors for O‐GlcNAc in different contexts.  相似文献   

19.
Biologically relevant hydrophilic molecules rarely interact with hydrophobic compounds and surfaces in water owing to effective hydration. Nevertheless, herein we report that the hydrophobic cavity of a polyaromatic capsule, formed through coordination‐driven self‐assembly, can encapsulate hydrophilic oligo(lactic acid)s in water with relatively high binding constants (up to Ka=3×105 m −1). X‐ray crystallographic and ITC analyses revealed that the unusual host–guest behavior is caused by enthalpic stabilization through multiple CH–π and hydrogen‐bonding interactions. The polyaromatic cavity stabilizes hydrolyzable cyclic di(lactic acid) and captures tetra(lactic acid) preferentially from a mixture of oligo(lactic acid)s even in water.  相似文献   

20.
The 2D porous copper(Ⅰ) complex with 1,3-dicyanobenzene (DCB), [Cu(DCB)2](PF6)(Me2CO) 1, exhibits channels along axis c, in which one molecule acetone and one anion PF6 per formula unit are included respectively. The reversible incorporation of guest acetone and acetonitrile, as well as the anion exchange from PF6^- to BF4^- or CF3SO3^-, was investigated by thermogravimetric (TG) analysis, ^1H NMR spectra and/or infrared absorption spectroscopy. Additionally, the incorporation of benzene and toluene into complex 1 was also discussed. Complex 1 exhibited size selectivity for guest inclusion or anion exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号