首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The development of ecofriendly methods for carbon–carbon (C?C) and carbon–heteroatom (C?Het) bond formation is of great significance in modern‐day research. Metal‐free cross‐dehydrogenative coupling (CDC) has emerged as an important tool for organic and medicinal chemists as a means to form C?C and C?Het bonds, as it is atom economical and more efficient and greener than transition‐metal catalyzed CDC reactions. Molecular iodine (I2) is recognized as an inexpensive, environmentally benign, and easy‐to‐handle catalyst or reagent to pursue CDCs under mild reaction conditions, with good regioselectivities and broad substrate compatibility. This review presents the recent developments of I2‐catalyzed C?C, C?N, C?O, and C?S/C?Se bond‐forming reactions for the synthesis of various important organic molecules by cross‐dehydrogenative coupling.  相似文献   

2.
The direct functionalization of C? H bonds in organic compounds has recently emerged as a powerful and ideal method for the formation of carbon–carbon and carbon–heteroatom bonds. This Review provides an overview of C? H bond functionalization strategies for the rapid synthesis of biologically active compounds such as natural products and pharmaceutical targets.  相似文献   

3.
Zeolite imidazolate frameworks (ZIFs) have recently emerged as an ideal type of carbon precursors with abundant tailorability. In this work, a series of ZIF‐derived porous carbon catalysts have been prepared with encapsulation of bimetallic oxide nanoparticles via simple thermal treatment. The composition and structure of these catalysts were confirmed in detail by different characterization methods. The bimetallic oxide (Mn/Co, Fe/Co, and Cu/Co) nanoparticles were encapsulated in the nitrogen‐doped graphitized carbon matrix. Moreover, the hierarchically porous structure and carbon defects were successfully constructed in the carbon catalysts. Additionally, in the selective oxidation of saturated C–H bonds in alkyl arenes, the carbon catalysts demonstrate outstanding performance for the oxidation of C–H bonds to corresponding carboxyl groups. This was due to their unique structure can greatly promote mass transfer and molecular oxygen activation, resulting in high conversion and high selectivity. Remarkably, this work here could also provide a novel strategy to the controllable synthesis of metal–organic frameworks (MOFs)‐derived carbon catalysts for enhanced performance in heterogeneous catalysis.  相似文献   

4.
The transition‐metal‐free insertion of isolated alkynes into carbon–carbon σ‐bonds of unstrained cyclic β‐dicarbonyl compounds has been reported. These tandem reactions offer an efficient synthesis of medium‐sized ring or fused‐ring compounds through ring expansion. The methodology has the potential to be widely used throughout organic synthesis due to the easily accessible starting materials and mild reaction conditions.  相似文献   

5.
Nature provides an inexhaustible diversity of small organic molecules with beautiful molecular architectures that have strong and selective inhibitory activities. However, this tremendous biomedical potential often remains inaccessible, as the structural complexity of natural products can render their synthetic preparation extremely challenging. This problem is addressable by harnessing the biocatalytic procedures evolved by nature. In this work, we present an enzymatic total synthesis of ikarugamycin. The use of an iterative PKS/NRPS machinery and two reductases has allowed the construction of 15 carbon–carbon and 2 carbon–nitrogen bonds in a biocatalytic one‐pot reaction. By scaling‐up this method we demonstrate the applicability of biocatalytic approaches for the ex vivo synthesis of complex natural products.  相似文献   

6.
The catalytic and selective construction of carbon–carbon bonds for the generation of complex molecules is one of the most important tasks in organic chemistry. This was clearly highlighted by the 2010 Nobel Prize in Chemistry, which was awarded for the development of Pd‐catalyzed cross‐coupling reactions. The underlying concept of cross‐linking building blocks to generate molecular complexity can also be widely found in natural product biosynthesis. Impressive examples for such natural cross‐coupling reactions are biosynthetic processes for the assembly of biaryl moieties in natural products—highly efficient enzymatic reactions that often achieve synthetically yet unmatched selectivities. This Minireview highlights selected examples that showcase these fascinating biotransformations.  相似文献   

7.
Transition‐metal‐catalyzed C–H bond functionalization has become one of the most promising strategies to prepare complex molecules from simple precursors. However, the utilization of environmentally unfriendly oxidants in the oxidative C–H bond functionalization reactions reduces their potential applications in organic synthesis. This account describes our recent efforts in the development of a redox‐neutral C–H bond functionalization strategy for direct addition of inert C–H bonds to unsaturated double bonds and a redox‐green C–H bond functionalization strategy for realization of oxidative C–H functionalization with O2 as the sole oxidant, aiming to circumvent the problems posed by utilizing environmentally unfriendly oxidants. In principle, these redox‐neutral and redox‐green strategies pave the way for establishing new environmentally benign transition‐metal‐catalyzed C–H bond functionalization strategies.  相似文献   

8.
The carbon‐carbon and carbon‐heteroatom bond formation reactions are considered as a fundamental tool in synthetic organic chemistry. They have been effectively utilized in the synthesis of medicinally significant molecules, agrochemicals and valuable compounds in material sciences. This has been primarily enabled by highly efficient protocols arising from divergent mechanistic pathways. In this personal account, we aim to discuss some recent advances in carbon‐carbon or carbon‐heteroatom bond formation reactions to which our group has actively contributed. More specifically, this record focuses on the use of unsaturated carbon compounds for the construction of C?C and C?X bonds.  相似文献   

9.
Copper‐catalyzed Ullmann condensations are key reactions for the formation of carbon–heteroatom and carbon–carbon bonds in organic synthesis. These reactions can lead to structural moieties that are prevalent in building blocks of active molecules in the life sciences and in many material precursors. An increasing number of publications have appeared concerning Ullmann‐type intermolecular reactions for the coupling of aryl and vinyl halides with N, O, and C nucleophiles, and this Minireview highlights recent and major developments in this topic since 2004.  相似文献   

10.
Examination of nature's favorite molecules reveals a striking preference for making carbon–heteroatom bonds over carbon–carbon bonds—surely no surprise given that carbon dioxide is nature's starting material and that most reactions are performed in water. Nucleic acids, proteins, and polysaccharides are condensation polymers of small subunits stitched together by carbon–heteroatom bonds. Even the 35 or so building blocks from which these crucial molecules are made each contain, at most, six contiguous C−C bonds, except for the three aromatic amino acids. Taking our cue from nature's approach, we address here the development of a set of powerful, highly reliable, and selective reactions for the rapid synthesis of useful new compounds and combinatorial libraries through heteroatom links (C−X−C), an approach we call “click chemistry”. Click chemistry is at once defined, enabled, and constrained by a handful of nearly perfect “spring‐loaded” reactions. The stringent criteria for a process to earn click chemistry status are described along with examples of the molecular frameworks that are easily made using this spartan, but powerful, synthetic strategy.  相似文献   

11.
Decarboxylative C?H functionalization reactions are highly attractive methods for forging carbon–carbon bonds considering their inherent step‐ and atom‐economical features and the pervasiveness of carboxylic acids and C?H bonds. An ideal approach to achieve these dehydrogenative transformations is through hydrogen evolution without using any chemical oxidants. However, effective couplings by decarboxylative carbon–carbon bond formation with proton reduction remain an unsolved challenge. Herein, we report an electrophotocatalytic approach that merges organic electrochemistry with photocatalysis to achieve the efficient direct decarboxylative C?H alkylation and carbamoylation of heteroaromatic compounds through hydrogen evolution. This electrophotocatalytic method, which combines the high efficiency and selectivity of photocatalysis in promoting decarboxylation with the superiority of electrochemistry in effecting proton reduction, enables the efficient coupling of a wide range of heteroaromatic bases with a variety of carboxylic acids and oxamic acids. Advantageously, this method is scalable to decagram amounts, and applicable to the late‐stage functionalization of drug molecules.  相似文献   

12.
This Focus Review presents recent developments in the cleavage of C? C bonds in organic molecules. Significant progress in C? C activation, including the development of a variety of new synthetic strategies, has contributed to the development of this field over the past few decades. Transition‐metal‐mediated C? C bond cleavage has been shown to be a quite efficient process and several elegant metal‐free methods have also recently been developed. Strained rings have been widely used in C? C cleavage transformations; however, unstrained C? C activation has increasingly caught the attention of organic researchers, which inspired us to clarify the developments in this field.  相似文献   

13.
Organogallium and ‐indium compounds are useful reagents in organic synthesis because of their moderate stability, efficient reactivity and high chemoselectivity. Carbogallation and ‐indation of a carbon‐carbon multiple bond achieves the simultaneous formation of carbon‐carbon and carbon‐metal bonds. Heterogallation and ‐indation construct carbon‐heteroatom and carbon‐metal bonds. Therefore, these reaction systems represent a significant synthetic method for organogalliums and ‐indiums. Many chemists have attempted to apply various types of unsaturated compounds such as alkynes, alkenes, and allenes to these reaction systems. This minireview provides an overview of carboindation and ‐gallation as well as heteroindation and ‐gallation.  相似文献   

14.
The development of new hydrogen‐atom transfer (HAT) strategies within the framework of photoredox catalysis is highly appealing for its power to activate a desired C−H bond in the substrate leading to its selective functionalization. Reported here is the first photoredox‐mediated hydrogen‐atom transfer method for the efficient synthesis of ynones, ynamides, and ynoates with high regio‐ and chemoselectivity by direct functionalization of C (O)−H bonds. The broad synthetic application of this method has been demonstrated by the selective functionalization of C(O)−H bonds within complex molecular scaffolds.  相似文献   

15.
《中国化学》2018,36(9):809-814
Organophosphorus compounds are essential structures in modern pharmaceutical, agrochemical, and material sciences. The development of new and efficient methods for the synthesis of C–P bonds has been an important focus of research. We herein report a Pd‐catalyzed enamido C(sp2)–H phosphorylation for direct construction of C–P bonds under simple and convenient conditions without the need for additional ligands or directing groups. The present reaction can tolerate a wide range of functional groups, and furnish a variety of phosphorylation products including tetrasubstituted‐vinyl β‐aminophosphonates that are otherwise difficult to access. This protocol was also exemplified into the late‐stage modification of bioactive natural products and was suitable for large‐scale synthesis.  相似文献   

16.
As a key element in the construction of complex organic scaffolds, the formation of C?C bonds remains a challenge in the field of synthetic organic chemistry. Recent advancements in single‐electron chemistry have enabled new methods for the formation of various C?C bonds. Disclosed herein is the development of a novel single‐electron reduction of acyl azoliums for the formation of ketones from carboxylic acids. Facile construction of the acyl azolium in situ followed by a radical–radical coupling was made possible merging N‐heterocyclic carbene (NHC) and photoredox catalysis. The utility of this protocol in synthesis was showcased in the late‐stage functionalization of a variety of pharmaceutical compounds. Preliminary investigations using chiral NHCs demonstrate that enantioselectivity can be achieved, showcasing the advantages of this protocol over alternative methodologies.  相似文献   

17.
The activation of carbon–fluorine (C?F) bonds is an important topic in synthetic organic chemistry. Metal‐mediated and ‐catalyzed elimination of β‐ or α‐fluorine proceeds under milder conditions than oxidative addition to C?F bonds. The β‐ or α‐fluorine elimination is initiated from organometallic intermediates having fluorine substituents on carbon atoms β or α to metal centers, respectively. Transformations through these elimination processes (C?F bond cleavage), which are typically preceded by carbon–carbon (or carbon–heteroatom) bond formation, have been increasingly developed in the past five years as C?F bond activation methods. In this Minireview, we summarize the applications of transition‐metal‐mediated and ‐catalyzed fluorine elimination to synthetic organic chemistry from a historical perspective with early studies and from a systematic perspective with recent studies.  相似文献   

18.
The site‐selective functionalization of unactivated C(sp3)?H bonds remains one of the greatest challenges in organic synthesis. Herein, we report on the site‐selective δ‐C(sp3)?H alkylation of amino acids and peptides with maleimides via a kinetically less favored six‐membered palladacycle in the presence of more accessible γ‐C(sp3)?H bonds. Experimental studies revealed that C?H bond cleavage occurs reversibly and preferentially at γ‐methyl over δ‐methyl C?H bonds while the subsequent alkylation proceeds exclusively at the six‐membered palladacycle that is generated by δ‐C?H activation. The selectivity can be explained by the Curtin–Hammett principle. The exceptional compatibility of this alkylation with various oligopeptides renders this procedure valuable for late‐stage peptide modifications. Notably, this process is also the first palladium(II)‐catalyzed Michael‐type alkylation reaction that proceeds through C(sp3)?H activation.  相似文献   

19.
Hydrophosphination is an atomically efficient method for introducing new carbon‐phosphorous bonds in organic synthesis. New late‐transition metal catalytic complexes are proposed to facilitate this process. These nickel‐based complexes are analyzed using semiempirical (SE), Hartree–Fock (H–F), and density functional theory (DFT) models. H–F proves to be ineffective, while the SE approach has limited, qualitative use. DFT shows electron density at the metal center suitable for catalyzing bond formation in the proposed, reductive hydrophosphination mechanism. It also shows that the pincer complexes under investigation are relatively insensitive to solvent dielectric constant and to the chemical character of the monodentate ligand, both in terms of electron distribution and in terms of molecular orbital energies. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
Cumulene compounds are notoriously difficult to prepare and study because their reactivity increases dramatically with the increasing number of consecutive double bonds. In this respect, the emerging field of on‐surface synthesis provides exceptional opportunities because it relies on reactions on clean metal substrates under well‐controlled ultrahigh‐vacuum conditions. Here we report the on‐surface synthesis of a polymer linked by cumulene‐like bonds on a Au(111) surface via sequential thermally activated dehalogenative C?C coupling of a tribenzoazulene precursor equipped with two dibromomethylene groups. The structure and electronic properties of the resulting polymer with cumulene‐like pentagon–pentagon and heptagon–heptagon connections have been investigated by means of scanning probe microscopy and spectroscopy methods and X‐ray photoelectron spectroscopy, complemented by density functional theory calculations. Our results provide perspectives for the on‐surface synthesis of cumulene‐containing compounds, as well as protocols relevant to the stepwise fabrication of carbon–carbon bonds on surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号