共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
Controlled Generation of Singlet Oxygen in Living Cells with Tunable Ratios of the Photochromic Switch in Metal–Organic Frameworks 下载免费PDF全文
Jihye Park Dr. Qin Jiang Dr. Dawei Feng Prof. Dr. Hong‐Cai Zhou 《Angewandte Chemie (International ed. in English)》2016,55(25):7188-7193
Development of a photosensitizing system that can reversibly control the generation of singlet oxygen (1O2) is of great interest for photodynamic therapy (PDT). Recently several photosensitizer–photochromic‐switch dyads were reported as a potential means of the 1O2 control in PDT. However, the delivery of such a homogeneous molecular dyad as designed (e.g., optimal molar ratio) is extremely challenging in living systems. Herein we show a Zr‐MOF nanoplatform, demonstrating energy transfer‐based 1O2 controlled PDT. Our strategy allows for tuning the ratios between photosensitizer and the switch molecule, enabling maximum control of 1O2 generation. Meanwhile, the MOF provides proximal placement of the functional entities for efficient intermolecular energy transfer. As a result, the MOF nanoparticle formulation showed enhanced PDT efficacy with superior 1O2 control compared to that of homogeneous molecular analogues. 相似文献
3.
Inside Cover: Controlled Generation of Singlet Oxygen in Living Cells with Tunable Ratios of the Photochromic Switch in Metal–Organic Frameworks (Angew. Chem. Int. Ed. 25/2016) 下载免费PDF全文
Jihye Park Dr. Qin Jiang Dr. Dawei Feng Prof. Dr. Hong‐Cai Zhou 《Angewandte Chemie (International ed. in English)》2016,55(25):7010-7010
4.
Dr. Jared B. DeCoste Dr. Mitchell H. Weston Patrick E. Fuller Trenton M. Tovar Gregory W. Peterson Dr. M. Douglas LeVan Dr. Omar K. Farha 《Angewandte Chemie (International ed. in English)》2014,53(51):14092-14095
We present a systematic study of metal–organic frameworks (MOFs) for the storage of oxygen. The study starts with grand canonical Monte Carlo simulations on a suite of 10 000 MOFs for the adsorption of oxygen. From these data, the MOFs were down selected to the prime candidates of HKUST‐1 (Cu‐BTC) and NU‐125, both with coordinatively unsaturated Cu sites. Oxygen isotherms up to 30 bar were measured at multiple temperatures to determine the isosteric heat of adsorption for oxygen on each MOF by fitting to a Toth isotherm model. High pressure (up to 140 bar) oxygen isotherms were measured for HKUST‐1 and NU‐125 to determine the working capacity of each MOF. Compared to the zeolite NaX and Norit activated carbon, NU‐125 has an increased excess capacity for oxygen of 237 % and 98 %, respectively. These materials could ultimately prove useful for oxygen storage in medical, military, and aerospace applications. 相似文献
5.
6.
Nanoscale Trimetallic Metal–Organic Frameworks Enable Efficient Oxygen Evolution Electrocatalysis 下载免费PDF全文
Fei‐Long Li Qi Shao Prof. Xiaoqing Huang Prof. Jian‐Ping Lang 《Angewandte Chemie (International ed. in English)》2018,57(7):1888-1892
Metal–organic frameworks (MOFs) are a class of promising materials for diverse heterogeneous catalysis, but they are usually not directly employed for oxygen evolution electrocatalysis. Most reports focus on using MOFs as templates to in situ create efficient electrocatalysts through annealing. Herein, we prepared a series of Fe/Ni‐based trimetallic MOFs (Fe/Ni/Co(Mn)‐MIL‐53 accordingly to the Material of Institute Lavoisier) by solvothermal synthesis, which can be directly adopted as highly efficient electrocatalysts. The Fe/Ni/Co(Mn)‐MIL‐53 shows a volcano‐type oxygen evolution reaction (OER) activity as a function of compositions. The optimized Fe/Ni2.4/Co0.4‐MIL‐53 can reach a current density of 20 mA cm?2 at low overpotential of 236 mV with a small Tafel slope of 52.2 mV dec?1. In addition, the OER performance of these MOFs can be further enhanced by directly being grown on nickel foam (NF). 相似文献
7.
Jinqiao Dong Xing Han Yan Liu Haiyang Li Yong Cui 《Angewandte Chemie (International ed. in English)》2020,59(33):13722-13733
Many sophisticated chemical and physical properties of porous materials strongly rely on the presence of the metal ions within the structures. Whereas homogeneous distribution of metals is conveniently realized in metal–organic frameworks (MOFs), the limited stability potentially restricts their practical implementation. From that perspective, the development of metal–covalent organic frameworks (MCOFs) may address these shortcomings by incorporating active metal species atop highly stable COF backbones. This Minireview highlights examples of MCOFs that tackle important issues from their design, synthesis, characterization to cutting‐edge applications. 相似文献
8.
Kun‐Yu Wang Liang Feng Tian‐Hao Yan Shengxiang Wu Elizabeth A. Joseph Hong‐Cai Zhou 《Angewandte Chemie (International ed. in English)》2020,59(28):11349-11354
Hierarchically porous metal–organic frameworks (HP‐MOFs) facilitate mass transfer due to mesoporosity while preserving the advantage of microporosity. This unique feature endows HP‐MOFs with remarkable application potential in multiple fields. Recently, new methods such as linker labilization for the construction of HP‐MOFs have emerged. To further enrich the synthetic toolkit of MOFs, we report a controlled photolytic removal of linkers to create mesopores within microporous MOFs at tens of milliseconds. Ultraviolet (UV) laser has been applied to eliminate “photolabile” linkers without affecting the overall crystallinity and integrity of the original framework. Presumably, the creation of mesopores can be attributed to the missing‐cluster defects, which can be tuned through varying the time of laser exposure and ratio of photolabile/robust linkers. Upon laser exposure, MOF crystals shrank while metal oxide nanoparticles formed giving rise to the HP‐MOFs. In addition, photolysis can also be utilized for the fabrication of complicated patterns with high precision, paving the way towards MOF lithography, which has enormous potential in sensing and catalysis. 相似文献
9.
Prof. Dr. Amarajothi Dhakshinamoorthy Prof. Dr. Abdullah M. Asiri Prof. Dr. Hermenegildo Garcia 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(24):8012-8024
This Concept is aimed at describing the current state of the art in metal–organic frameworks (MOFs) as heterogeneous catalysts for liquid‐phase oxidations, focusing on three important substrates, namely, alkenes, alkanes and alcohols. Emphases are on the nature of active sites that have been incorporated within MOFs and on future targets to be set in this area. Thus, selective alkene epoxidation with peroxides or oxygen catalyzed by constitutional metal nodes of MOFs as active sites are still to be developed. Moreover, no noble metal‐free MOF has been reported to date that can act as a general catalyst for the aerobic oxidation of primary and secondary aliphatic alcohols. In contrast, in the case of alkanes, a target should be to tune the polarity of MOF internal pores to control the outcome of the autooxidation process, resulting in the selective formation of alcohol/ketone mixtures at high conversion. 相似文献
10.
Dr. Cláudia Gomes Silva Ignacio Luz Dr. Francesc X. Llabrés i Xamena Prof. Dr. Avelino Corma Prof. Dr. Hermenegildo García 《Chemistry (Weinheim an der Bergstrasse, Germany)》2010,16(36):11133-11138
The Zr‐containing metal–organic frameworks (MOFs) formed by terephthalate (UiO‐66) and 2‐aminoterephthalate ligands [UiO‐66(NH2)] are two notably water‐resistant MOFs that exhibit photocatalytic activity for hydrogen generation in methanol or water/methanol upon irradiation at wavelength longer than 300 nm. The apparent quantum yield for H2 generation using monochromatic light at 370 nm in water/methanol 3:1 was of 3.5 % for UiO‐66(NH2). Laser‐flash photolysis has allowed detecting for UiO‐66 and UiO‐66(NH2) the photochemical generation of a long lived charge separated state whose decay is not complete 300 μs after the laser flash. Our finding and particularly the influence of the amino group producing a bathochromic shift in the optical spectrum without altering the photochemistry shows promises for the development of more efficient MOFs for water splitting. 相似文献
11.
Jun Heuk Park Jan Paczesny Namhun Kim Bartosz A. Grzybowski 《Angewandte Chemie (International ed. in English)》2020,59(26):10301-10305
When components of a metal–organic framework (MOF) and a crystal growth modulator diffuse through a gel medium, they can form arrays of regularly‐spaced precipitation bands containing MOF crystals of different morphologies. With time, slow variations in the local concentrations of the growth modulator cause the crystals to change their shapes, ultimately resulting in unusual concave microcrystallites not available via solution‐based methods. The reaction–diffusion and periodic precipitation phenomena 1) extend to various types of MOFs and also MOPs (metal–organic polyhedra), and 2) can be multiplexed to realize within one gel multiple growth conditions, in effect leading to various crystalline phases or polycrystalline formations. 相似文献
12.
Yonghwi Kim Dr. Sunirban Das Saurav Bhattacharya Soonsang Hong Dr. Min Gyu Kim Dr. Minyoung Yoon Prof. Dr. Srinivasan Natarajan Prof. Dr. Kimoon Kim 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(52):16642-16648
A porous metal–organic framework, Mn(H3O)[(Mn4Cl)3(hmtt)8] (POST‐65), was prepared by the reaction of 5,5′,10,10′,15,15′‐hexamethyltruxene‐2,7,12‐tricarboxylic acid (H3hmtt) with MnCl2 under solvothermal conditions. POST‐65(Mn) was subjected to post‐synthetic modification with Fe, Co, Ni, and Cu according to an ion‐exchange method that resulted in the formation of three isomorphous frameworks, POST‐65(Co/Ni/Cu), as well as a new framework, POST‐65(Fe). The ion‐exchanged samples could not be prepared by regular solvothermal reactions. The complete exchange of the metal ions and retention of the framework structure were verified by inductively coupled plasma–atomic emission spectrometry (ICP‐AES), powder X‐ray diffraction (PXRD), and Brunauer–Emmett–Teller (BET) surface‐area analysis. Single‐crystal X‐ray diffractions studies revealed a single‐crystal‐to‐single‐crystal (SCSC)‐transformation nature of the ion‐exchange process. Hydrogen‐sorption and magnetization measurements showed metal‐specific properties of POST‐65. 相似文献
13.
David Farrusseng Dr. Sonia Aguado Dr. Catherine Pinel Dr. 《Angewandte Chemie (International ed. in English)》2009,48(41):7502-7513
The role of metal–organic frameworks (MOFs) in the field of catalysis is discussed, and special focus is placed on their assets and limits in light of current challenges in catalysis and green chemistry. Their structural and dynamic features are presented in terms of catalytic functions along with how MOFs can be designed to bridge the gap between zeolites and enzymes. The contributions of MOFs to the field of catalysis are comprehensively reviewed and a list of catalytic candidates is given. The subject is presented from a multidisciplinary point of view covering solid‐state chemistry, materials science, and catalysis. 相似文献
14.
Fahime Bigdeli Christina T. Lollar Ali Morsali Hong‐Cai Zhou 《Angewandte Chemie (International ed. in English)》2020,59(12):4652-4669
In recent years, metal–organic frameworks (MOFs) have become an area of intense research interest because of their adjustable pores and nearly limitless structural diversity deriving from the design of different organic linkers and metal structural building units (SBUs). Among the recent great challenges for scientists include switchable MOFs and their corresponding applications. Switchable MOFs are a type of smart material that undergo distinct, reversible, chemical changes in their structure upon exposure to external stimuli, yielding interesting technological applicability. Although the process of switching shares similarities with flexibility, very limited studies have been devoted specifically to switching, while a fairly large amount of research and a number of Reviews have covered flexibility in MOFs. This Review focuses on the properties and general design of switchable MOFs. The switching activity has been delineated based on the cause of the switching: light, spin crossover (SCO), redox, temperature, and wettability. 相似文献
15.
Xue Feng Lu Bao Yu Xia Shuang‐Quan Zang Xiong Wen Lou 《Angewandte Chemie (International ed. in English)》2020,59(12):4634-4650
In view of the clean and sustainable energy, metal–organic frameworks (MOFs) based materials, including pristine MOFs, MOF composites, and their derivatives are emerging as unique electrocatalysts for oxygen reduction reaction (ORR). Thanks to their tunable compositions and diverse structures, efficient MOF‐based materials provide new opportunities to accelerate the sluggish ORR at the cathode in fuel cells and metal–air batteries. This Minireview first provides some introduction of ORR and MOFs, followed by the classification of MOF‐based electrocatalysts towards ORR. Recent breakthroughs in engineering MOF‐based ORR electrocatalysts are highlighted with an emphasis on synthesis strategy, component, morphology, structure, electrocatalytic performance, and reaction mechanism. Finally, some current challenges and future perspectives for MOF‐based ORR electrocatalysts are also discussed. 相似文献
16.
Materials that can recognize the changes in their local environment and respond by altering their inherent physical and/or chemical properties are strong candidates for future “smart” technology materials. Metal–organic frameworks (MOFs) have attracted a great deal of attention in recent years owing to their designable architecture, host–guest chemistry, and softness as porous materials. Despite this fact, studies on the tuning of the properties of MOFs by external stimuli are still rare. This review highlights the recent developments in the field of stimulus‐responsive MOFs or so‐called smart MOFs. In particular, the various stimuli used and the utility of stimulus‐responsive smart MOFs for various applications such as gas storage and separation, sensing, clean energy, catalysis, molecular motors, and biomedical applications are highlighted by using representative examples. Future directions in the developments of stimulus‐responsive smart MOFs and their applications are proposed from a personal perspective. 相似文献
17.
Lei Sun Dr. Michael G. Campbell Prof. Mircea Dincă 《Angewandte Chemie (International ed. in English)》2016,55(11):3566-3579
Owing to their outstanding structural, chemical, and functional diversity, metal–organic frameworks (MOFs) have attracted considerable attention over the last two decades in a variety of energy‐related applications. Notably missing among these, until recently, were applications that required good charge transport coexisting with porosity and high surface area. Although most MOFs are electrical insulators, several materials in this class have recently demonstrated excellent electrical conductivity and high charge mobility. Herein we review the synthetic and electronic design strategies that have been employed thus far for producing frameworks with permanent porosity and long‐range charge transport properties. In addition, key experiments that have been employed to demonstrate electrical transport, as well as selected applications for this subclass of MOFs, will be discussed. 相似文献
18.
Prof. Dr. Zhenlan Fang Bart Bueken Prof. Dr. Dirk E. De Vos Prof. Dr. Roland A. Fischer 《Angewandte Chemie (International ed. in English)》2015,54(25):7234-7254
Defect engineering in metal–organic frameworks (MOFs) is an exciting concept for tailoring material properties, which opens up novel opportunities not only in sorption and catalysis, but also in controlling more challenging physical characteristics such as band gap as well as magnetic and electrical/conductive properties. It is challenging to structurally characterize the inherent or intentionally created defects of various types, and there have so far been few efforts to comprehensively discuss these issues. Based on selected reports spanning the last decades, this Review closes that gap by providing both a concise overview of defects in MOFs, or more broadly coordination network compounds (CNCs), including their classification and characterization, together with the (potential) applications of defective CNCs/MOFs. Moreover, we will highlight important aspects of “defect‐engineering” concepts applied for CNCs, also in comparison with relevant solid materials such as zeolites or COFs. Finally, we discuss the future potential of defect‐engineered CNCs. 相似文献
19.
20.
Microporous metal–organic frameworks (MOFs) are comparatively new porous materials. Because the pores within such MOFs can be readily tuned through the interplay of both metal‐containing clusters and organic linkers to induce their size‐selective sieving effects, while the pore surfaces can be straightforwardly functionalized to enforce their different interactions with gas molecules, MOF materials are very promising for gas separation. Furthermore, the high porosities of such materials can enable microporous MOFs with optimized gas separation selectivity and capacity to be targeted. This Focus Review highlights recent significant advances in microporous MOFs for gas separation. 相似文献