首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The complex CuII(Py3P) ( 1 ) is an electrocatalyst for water oxidation to dioxygen in H2PO4?/HPO42? buffered aqueous solutions. Controlled potential electrolysis experiments with 1 at pH 8.0 at an applied potential of 1.40 V versus the normal hydrogen electrode resulted in the formation of dioxygen (84 % Faradaic yield) through multiple catalyst turnovers with minimal catalyst deactivation. The results of an electrochemical kinetics study point to a single‐site mechanism for water oxidation catalysis with involvement of phosphate buffer anions either through atom–proton transfer in a rate‐limiting O? O bond‐forming step with HPO42? as the acceptor base or by concerted electron–proton transfer with electron transfer to the electrode and proton transfer to the HPO42? base.  相似文献   

3.
4.
In regard to earth‐abundant cobalt water oxidation catalysts, very recent findings show the reorganization of the materials to amorphous active phases under catalytic conditions. To further understand this concept, a unique cobalt‐substituted crystalline zinc oxide (Co:ZnO) precatalyst has been synthesized by low‐temperature solvolysis of molecular heterobimetallic Co4?xZnxO4 (x=1–3) precursors in benzylamine. Its electrophoretic deposition onto fluorinated tin oxide electrodes leads after oxidative conditioning to an amorphous self‐supported water‐oxidation electrocatalyst, which was observed by HR‐TEM on FIB lamellas of the EPD layers. The Co‐rich hydroxide‐oxidic electrocatalyst performs at very low overpotentials (512 mV at pH 7; 330 mV at pH 12), while chronoamperometry shows a stable catalytic current over several hours.  相似文献   

5.
Borate buffer was found to have both structural and functional roles within a low-cost tri-copper electrocatalyst for homogeneous water oxidation that exhibits a high turnover frequency of 310 s−1. The borate buffer was shown to facilitate the catalytic activity by both bridging the three Cu ions and participating in O−O bond formation. Phosphate and acetate buffers did not show such roles, making borate a unique player in this catalytic system.  相似文献   

6.
Although many noble‐metal catalysts have been used for the oxidation of organosilanes, there has been less success with non‐noble‐metal catalysts. Here, unsupported nanoporous copper (np‐Cu) is used to catalyze the oxidation of organosilanes under mild conditions. It is the first time that this reaction has been achieved with a heterogeneous copper catalyst with high activity and selectivity. Both water and alcohols are used as oxidants and the corresponding organosilanols and organosilyl ethers are obtained in high yield. The possible mechanism was obtained by kinetic studies. The catalyst could be reused at least five times without evident loss of activity. As a novel green catalyst np‐Cu should play a unique role in organic synthesis.  相似文献   

7.
Oxidation of alkenes to carbonyls or diols compounds is important in synthesizing fine chemicals and pharmaceutical intermediates. We report the synthesis and characterization of an aluminum metal-organic framework node-supported copper(II) chloride (DUT-5-CuCl), which is an efficient heterogeneous catalyst for the oxidation of alkenes using H2O2 as an oxidizing agent. Styrene and various substituted styrenes were transformed into the corresponding carbonyl compounds in excellent selectivity and yields. DUT-5-CuCl is tolerant with various functional groups and could be recycled and reused at least 5 times in the oxidation of α-methylstyrene. Unlike the oxidation of styrene derivatives, DUT-5-Cu catalyzed oxidation of aliphatic and cyclic alkenes produced 1,2-diols compounds selectively. The mechanism of the DUT-5-Cu catalyzed oxidation of styrene to benzaldehyde was investigated in detail by various experiments such as the determination of reaction intermediates and characterization of the catalyst after catalysis, and computational studies. This work highlights the importance of MOF-supported earth-abundant metal catalysts for oxidation reactions to produce fine chemicals.  相似文献   

8.
CoII salts in the presence of HCO3/CO32− in aqueous solutions act as electrocatalysts for water oxidation. It comprises of several key steps: (i) A relatively small wave at Epa≈0.71 V (vs. Ag/AgCl) owing to the CoIII/II redox couple. (ii) A second wave is observed at Epa≈1.10 V with a considerably larger current. In which the CoIII undergoes oxidation to form a CoIV species. The large current is attributed to catalytic oxidation of HCO3/CO32− to HCO4. (iii) A process with very large currents at >1.2 V owing to the formation of CoV(CO3)3, which oxidizes both water and HCO3/CO32−. These processes depend on [CoII], [NaHCO3], and pH. Chronoamperometry at 1.3 V gives a green deposit. It acts as a heterogeneous catalyst for water oxidation. DFT calculations point out that Con(CO3)3n−6, n=4, 5 are attainable at potentials similar to those experimentally observed.  相似文献   

9.
Keggin‐type polyoxometalate anions [XM12O40]n? are versatile, as their applications in interdisciplinary areas show. The Keggin anion [CoW12O40]6? turns into an efficient and robust electrocatalyst upon its confinement in the well‐defined void space of ZIF‐8, a metal–organic framework (MOF). [H6CoW12O40]@ZIF‐8 is so stable to water oxidation that it retains its initial activity even after 1000 catalytic cycles. The catalyst has a turnover frequency (TOF) of 10.8 mol O2(mol Co)?1 s?1, one of the highest TOFs for electrocatalytic oxygen evolution at neutral pH. Controlled experiments rule out the chances of formation and participation of CoOx in this electrocatalyic water oxidation.  相似文献   

10.
In fabricating an artificial photosynthesis (AP) electrode for water oxidation, we have devised a semiconductor-mediator-catalyst structure that mimics photosystem II (PSII). It is based on a surface layer of vertically grown nanorods of Fe2O3 on fluorine doped tin oxide (FTO) electrodes with a carbazole mediator base and a Ru(II) carbene complex on a nanolayer of TiO2 as a water oxidation co-catalyst. The resulting hybrid assembly, FTO|Fe2O3|−carbazole|TiO2|−Ru(carbene) , demonstrates an enhanced photoelectrochemical (PEC) water oxidation performance compared to an electrode without the added carbaozle base with an increase in photocurrent density of 2.2-fold at 0.95 V vs. NHE and a negatively shifted onset potential of 500 mV. The enhanced PEC performance is attributable to carbazole mediator accelerated interfacial hole transfer from Fe2O3 to the Ru(II) carbene co-catalyst, with an improved effective surface area for the water oxidation reaction and reduced charge transfer resistance.  相似文献   

11.
12.
Molecular ruthenium‐based water oxidation catalyst precursors of general formula [Ru(tda)(Li)2] (tda2? is [2,2′:6′,2′′‐terpyridine]‐6,6′′‐dicarboxylato; L1=4‐(pyren‐1‐yl)‐N‐(pyridin‐4‐ylmethyl)butanamide, 1 b ; L2=4‐(pyren‐1‐yl)pyridine), 1 c ), have been prepared and thoroughly characterized. Both complexes contain a pyrene group allowing ready and efficiently anchoring via π interactions on multi‐walled carbon nanotubes (MWCNT). These hybrid solid state materials are exceptionally stable molecular water‐oxidation anodes capable of carrying out more than a million turnover numbers (TNs) at pH 7 with an Eapp=1.45 V vs. NHE without any sign of degradation. XAS spectroscopy analysis before, during, and after catalysis together with electrochemical techniques allow their unprecedented oxidative ruggedness to be monitored and verified.  相似文献   

13.
Developing a cost-effective, efficient, and stable oxygen evolution reaction (OER) catalyst is of great importance for sustainable energy conversion and storage. In this study, we report a facile one-step fabrication of cationic surfactant-assisted Prussian blue analogues (PBAs) Mx[Fe(CN)5CH3C6H4NH2]∙yC19H34NBr abbreviated as SF[Fe-Tol-M] (where SF = N-tridecyl-3-methylpyridinium bromide and M = Mn, Co and Ni) as efficient heterogeneous OER electrocatalysts. The electrocatalysts have been characterized by Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX) analysis, and X-ray photoelectron spectroscopy (XPS). In the presence of cationic surfactant (SF), PBAs-based electrodes showed enhanced redox current, high surface area and robust stability compared to the recently reported PBAs. SF[Fe-Tol-Co] hybrid catalyst shows superior electrochemical OER activity with a much lower over-potential (610 mV) to attain the current density of 10 mA cm−2 with the Tafel slope value of 103 mV·dec−1 than that for SF[Fe-Tol-Ni] and SF[Fe-Tol-Mn]. Moreover, the electrochemical impedance spectroscopy (EIS) unveiled that SF[Fe-Tol-Co] exhibits smaller charge transfer resistance, which results in a faster kinetics towards OER. Furthermore, SF[Fe-Tol-Co] offered excellent stability for continues oxygen production over extended reaction time. This work provides a surface assisted facile electrode fabrication approach for developing binder-free OER electrocatalysts for efficient water oxidation.  相似文献   

14.
Electrocatalytic water oxidation using the oxidatively robust 2,7‐[bis(2‐pyridylmethyl)aminomethyl]‐1,8‐naphthyridine ligand (BPMAN)‐based dinuclear copper(II) complex, [Cu2(BPMAN)(μ‐OH)]3+, has been investigated. This catalyst exhibits high reactivity and stability towards water oxidation in neutral aqueous solutions. DFT calculations suggest that the O? O bond formation takes place by an intramolecular direct coupling mechanism rather than by a nucleophilic attack of water on the high‐oxidation‐state CuIV?O moiety.  相似文献   

15.
A stringent comparison between two pairs of molecular/immobilized water oxidation catalysts ([Cp*Ir(Me-pica)Cl], 1 , versus 1_SiO2 , Me-pica=κ2-N-methyl-picolinamide; [Cp*Ir(pysa)NO3], 2 , versus 2_SiO2 , pysa=κ2-pyridine-2-sulfonamide]) reveals distinctive catalytic trends. While the molecular compound 1 exhibits a substantial higher activity than the analogous immobilized system 1_SiO2 , under all the experimental conditions explored, the contrary is found with 2 that is far less active than its immobilized counterpart 2_SiO2 . This is explained by the unique tendency of 2 to form dimeric complexes [Cp*Ir-(κ22-Hpysa)(κ22-pysa)IrCp*], 2 a , in phosphate buffered solution at pH 7, and [Cp*Ir-(κ22-Hpysa)2IrCp*], 2 b , in water. 2 a and 2 b have been completely characterized in solution by multinuclear and multidimensional NMR spectroscopy. They have been also isolated as single crystals and their structure in solid state determined by X-Ray diffractometry. 2 a and 2 b appear to be off-cycle species, whose formation is detrimental for water oxidation activity, as indicated by the observation of a long induction period when 2 a is used as catalytic precursor. In addition, TOF versus ΔE (E−E0=−RT/nF ln([IO4]/[IO3]) trends for the first two runs do not overlap for catalyst 2 and TOFmax is remarkably higher in the second run upon the addition of fresh NaIO4. In the immobilized system 2_SiO2 the detrimental associative processes are likely inhibited leading to an activity higher than that of 2 .  相似文献   

16.
The water‐soluble polypyridine copper complex [Cu(F3TPA)(ClO4)2] [ 1 ; F3TPA=tris(2‐fluoro‐6‐pyridylmethyl)amine] catalyzes water oxidation in a pH 8.5 borate buffer at a relatively low overpotential of 610 mV. Assisted by photosensitizer and an electron acceptor, 1 also exhibits activity as a homogeneous catalyst for photo‐induced O2 evolution with a maximum turnover frequency (TOF) of (1.58±0.03)×10?1 s?1 and a maximum turnover number (TON) of 11.61±0.23. In comparison, the reference [Cu(TPA)(ClO4)2] [TPA=tris(2‐pyridylmethyl)amine] displayed almost no activity under either set of conditions, implying the crucial role of the ligand in determining the behavior of the catalyst. Experimental evidence indicate the molecular catalytic nature of 1 , leading to a potentially practical strategy to apply the copper complex in a photoelectrochemical device for water oxidation.  相似文献   

17.
纳米钯催化剂对甲醇的电催化氧化   总被引:1,自引:0,他引:1  
牛凤娟  易清风 《电化学》2011,17(1):67-72
采用水热法,以甲醛作还原剂还原Pd2+-EDTA络合物,制得钛基纳米钯颗粒电极(nanoPd/Ti).扫描电子显微镜(SEM)显示,纳米钯颗粒直径约为60 nm,形成三维立体网状结构.在碱性溶液中,循环伏安及交流阻抗测试分别表明:nanoPd/Ti电极对甲醇氧化有极高的阳极电流、较低的起始氧化电位和较强的抗CO毒化能力.在nanoPd/Ti电极上甲醇电氧化反应的阻抗值较低,增加甲醇浓度,电极阻抗更低.电极对甲醇氧化具有极好的电催化活性.  相似文献   

18.
19.
A superhydrophilic and underwater superoleophobic Cu(OH)2‐covered mesh with micro‐ and nanoscale hierarchical composite structures is successfully fabricated through a one‐step chemical oxidation of a smooth‐copper mesh. Such mesh, without any further modification, can selectively separate water from oil/water mixtures with high separation efficiency, and possess excellent stability even after 60 uses. This method provides a simple, low‐cost, and scalable strategy for the purification of oily wastewater.  相似文献   

20.
在全球能源结构“清洁化”转型的背景下,可再生能源的开发与利用能够有效解决能源危机与环境问题,符合我国的可持续发展路线。能源转换与储存技术贯穿着循环能源技术的各个环节,是新型能源框架的核心支撑。 水氧化反应是众多能源体系(例如, 水裂解反应、 二氧化碳还原反应、 氮还原反应和金属-空气电池)的重要半反应, 但其动力学缓慢, 严重限制了设备的能源效率, 阻碍了相应技术的广泛应用。因此, 亟需开发具有低成本、 高活性、 强稳定性的水氧化电催化剂以降低反应能垒,进而推动能源转换与存储设备的工业化发展。钙钛矿型材料的晶体结构包容性强, 元素组成涵盖广泛, 具有丰富而独特的电子特性, 易于实现表面化学与电子结构的精准调控, 因此被公认为理想的催化材料设计平台。本文综述了钙钛矿型水氧化电催化剂的最新研究进展。首先介绍了钙钛矿型材料的晶体结构和电子特性,归纳了制备钙钛矿型氧化物的代表性的合成策略。通过讨论近期钙钛矿型水氧化电催化剂在酸性和碱性介质中的研究进展, 强调了钙钛矿型电催化剂结构与催化性能间的构效关系。 最后, 我们总结了钙钛矿型水氧化电催化剂在实际应用中面临的挑战与机遇, 提出了相应的建议与解决方案, 期望能使读者更清晰地认识到该领域的未来发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号