首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When targeting the quadrupolar p‐dianisyltetraphenyl‐carbo‐benzene by reductive treatment of a hexaoxy‐[6]pericyclyne precursor 3 with SnCl2/HCl, a strict control of the conditions allowed for the isolation of three C18‐macrocyclic products: the targeted aromatic carbo‐benzene 1 , a sub‐reduced non‐aromatic carbo‐cyclohexadiene 4 A , and an over‐reduced aromatic dihydro‐carbo‐benzene 5 A . Each of them was fully characterized by its absorption and NMR spectra, which were interpreted by comparison with calculated spectra from static structures optimized at the DFT level. According to the nucleus‐independent chemical shift (NICS) value (NICS≈?13 ppm), the macrocyclic aromaticity of 5 A is indicated to be equivalent to that of 1 . This is confirmed by the strong NMR spectroscopic deshielding of the ortho‐CH protons of the aryl substituents, but also by the strong shielding of the internal proton of the endocyclic trans‐CH?CH double bond that results from the hydrogenation of one of the C?C bonds of 3 . Both the aromatics 1 and 5 A exhibit a high crystallinity, revealed by SEM and TEM images, which allowed for a structural determination by using an X‐ray microsource. A good agreement with calculated molecular structures was found, and columnar assemblies of the C18 macrocycles were evidenced in the crystal packing. The non‐aromatic carbo‐cyclohexadiene 4 A is shown to be an intermediate in the formation of 1 from 3 . It exhibits a remarkable dichromism in solution, which is related to the occurrence of two intense bands in the visible region of its UV/Vis spectrum. These properties could be attributed to the dibutatrienylacetylene (DBA) unit that occurs in the three chromophores, but which is not involved in a macrocyclic π‐delocalization in 4 A only. A versatile redox behavior of the carbo‐chromophores is evidenced by cyclic voltammetry and was analyzed by calculation of the ionization potential, electron affinity, and frontier molecular orbitals.  相似文献   

2.
Ring carbo‐mers of oligo(phenylene ethynylene)s (OPEn, n=0–2), made of C2‐catenated C18 carbo‐benzene rings, have been synthesized and characterized by NMR and UV‐vis spectroscopy, crystallography and voltammetry. Analyses of crystal and DFT‐optimized structures show that the C18 rings preserve their individual aromatic character according to structural and magnetic criteria (NICS indices). Carbo‐terphenyls (n=2) are reversibly reduced at ca. ?0.42 V/SCE, i.e. 0.41 V more readily than the corresponding carbo‐benzene (?0.83 V/SCE), thus revealing efficient inter‐ring π‐conjugation. An accurate linear fit of E1/2red1 vs. the DFT LUMO energy suggests a notably higher value (?0.30 V/SCE) for a carbo‐quaterphenyl congener (n=3). Increase with n of the effective π‐conjugation is also evidenced by a red shift of two of the three main visible light absorption bands, all being assigned to TDDFT‐calculated excited states, one of them restricting to a HOMO→LUMO main one‐electron transition.  相似文献   

3.
A new bis‐xanthone (xanthone=9H‐xanthen‐9‐one), named bigarcinenone A ( 1 ) which is the first example of a bis‐xanthone with the xanthone–xanthone linkage between an aromatic C‐atom and a C5 side chain from a guttiferae plant, a new phloroglucinol (=benzene‐1,3,5‐triol) derivative, named garcinenone F ( 2 ), together with seven known xanthones were isolated from the bark of Garcinia xanthochymus. Their structures were elucidated by spectroscopic methods, especially 2D‐NMR techniques. Bigarcinenone A ( 1 ) exhibited potent antioxidant activity in the 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH) radical‐scavenging test with a IC50 value of 9.2 μM , compared to the positive control, the well‐known antioxidant butylated hydroxytoluene (BHT) with a IC50 of 20 μM (Table 3).  相似文献   

4.
An ice‐like hexameric water cluster, stabilized by the flexible bis‐imidazolyl compound 2,3,5,6‐tetrafluoro‐1,4‐bis(imidazol‐1‐ylmethyl)benzene (Fbix), is found in the trigonal R crystal structure of the title compound, C14H10F4N4·2H2O or Fbix·2H2O. The Fbix molecule lies about an inversion centre with one water molecule in the asymmetric unit in a general position. A cyclic chair‐like hexameric water cluster with symmetry is generated with a hydrogen‐bonded O...O distance within the hexamer of 2.786 (3) Å. The Fbix molecule adopts a trans conformation, where the imidazole ring makes a dihedral angle of 70.24 (11)° with the central tetrafluorinated aromatic ring. Each water hexamer is connected by six Fbix molecules through intermolecular O—H...N hydrogen bonds [N...O = 2.868 (3) Å] to yield a three‐dimensional supramolecular network with primitive cubic (pcu) topology. Large voids in each single pcu network lead to fourfold interpenetrated aggregates of Fbix·2H2O.  相似文献   

5.
The reactions of the 1,2‐diselenolato‐1,2‐dicarba‐closo‐dodecaborane(12) dianion 1 with diorganoelement(IV) dichlorides (Ph2CCl2, Me2SiCl2, Ph2SiCl2, Me2SnCl2, Ph2SnCl2) gave novel five‐member heterocycles along with other products. The molecular structures of the five‐member rings containing CPh2 ( 2 ) and SnPh2 ( 9 ) moieties between the selenium atoms were determined by X‐ray analyses. In the case of the chlorosilanes, the analogous five‐member ring containing the SiPh2 unit ( 4 ) could be identified in mixtures. The expected reaction was accompanied by rearrangement leading to formation of another five‐member ring 6 containing the Ph2Si? Se? Se moiety. Oxidative addition of the five‐member heterocycles containing tin ( 7, 9 ) to ethene‐bis(triphenylphosphane)platinum(0) gave at low temperature the bis(triphenylphosphane)platinum(II) complexes 12 and 13 , where the Pt(PPh3)2 fragment had been inserted into one of the Sn? Se bonds. Extensive decomposition of these complexes was observed above ? 20 °C. The proposed solution‐state structures of the new compounds are supported by multinuclear magnetic resonance data (1H, 11B, 13C, 29Si, 31P, 77Se, 119Sn and 195Pt NMR). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
A novel fluorinated aromatic dianhydride, 4,4′‐[2,2,2‐trifluoro‐1‐(3‐trifluoromethyl‐phenyl)ethylidene]diphthalic anhydride (TFDA) was synthesized by coupling of 3′‐trifluoromethyl‐2,2,2‐trifluoroacetophenone with o‐xylene under the catalysis of trifluoromethanesulfonic acid, followed by oxidation of KMnO4 and dehydration. A series of fluorinated aromatic polyimides derived from the novel fluorinated aromatic dianhydride TFDA with various aromatic diamines, such as p‐phenylenediamine (p‐PDA), 4,4′‐oxydianiline (ODA), 1,4‐bis(4‐aminophenoxy)benzene (p‐APB), 1,3‐bis(4‐amino‐phenoxy)benzene (m‐APB), 4‐(4‐aminophenoxy)‐3‐trifluoromethylphenylamine (3FODA) and 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)benzene (6FAPB), were prepared by polycondensation procedure. All the fluorinated polyimides were soluble in many polar organic solvents such as NMP, DMAc, DMF, and m‐cresol, as well as some of low boiling point organic solvents such as CHCl3, THF, and acetone. Homogeneous and stable polyimide solutions with solid content as high as 35–40 wt % could be achieved, which were prepared by strong and flexible polyimide films or coatings. The polymer films have good thermal stability with the glass transition temperature of 232–322 °C, the temperature at 5% weight loss of 500–530 °C in nitrogen, and have outstanding mechanical properties with the tensile strengths of 80.5–133.2 MPa as well as elongations at breakage of 7.1–12.6%. It was also found that the polyimide films derived from TFDA and fluorinated aromatic diamines possess low dielectric constants of 2.75–3.02, a low dissipation factor in the range of 1.27–4.50 × 10?3, and low moisture absorptions <1.3%. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4143–4152, 2004  相似文献   

7.
Conjugated oligoelectrolytes (COEs) are being introduced into a variety of optical and electronic technologies, yet the dependence of their properties as a function of molecular structure remains poorly understood. In response, we designed, synthesized, and examined a new tetracationic COE, namely, 1,4‐bis{9′,9′‐bis[6′′‐(N,N,N‐trimethylammonium)hexyl]‐2′‐fluorenyl}‐2,5‐bis(trifluoromethyl)benzene tetrabromide (FPF‐F6), which contains bulky electron‐withdrawing trifluoromethyl groups, and compared its properties with the unsubstituted counterpart 1,4‐bis{9′,9′‐bis[6′′‐(N,N,N‐trimethylammonium)hexyl]‐2′‐fluorenyl}benzene tetrabromide (FPF). The ground‐state geometry of FPF‐F6 is primarily twisted with little electronic communication between the aromatic units, as confirmed by single‐crystal X‐ray diffraction studies of the neutral precursor. However, absorption and photoluminescence spectroscopies reveal that the excited state of FPF‐F6 displays strong intramolecular charge‐transfer characteristics. Solution AFM in aqueous media shows that introduction of trifluoromethyl groups changes the size and aspect ratio of supramolecular aggregates that are brought together as a result of hydrophobic interactions. Furthermore, addition of ssDNA to FPF‐F6 leads to interoligoelectrolyte complexes wherein the backbone is more planar; the environment the chromophore experiences under these conditions is also considerably less polar. These findings provide considerable insight into the complex photophysics of electronically conjugated materials in aqueous media.  相似文献   

8.
The crystal structures of the two organic–inorganic hybrids bis(4‐aminopyridinium) hexachloridostannate(IV), (C5H7N2)2[SnCl6], and bis(p‐toluidinium) hexachloridostannate(IV), (C7H10N)2[SnCl6], differ in the way their cations pack in the layered structures. The Sn atom in the 4‐aminopyridinium compound lies on an inversion centre.  相似文献   

9.
2‐Bromo‐1,3‐bis[2‐(2‐naphthyl)vinyl]benzene benzene hemisolvate, C30H21Br·0.5C6H6, (I), with two formula units in the asymmetric unit, exists in the crystal structure in a conformation in which the trans (2‐naphthyl)vinyl substituents on the central bromobenzene moiety appear as nearly fully extended `wings', while 9‐bromodinaphth[1,2‐a:2′,1′‐j]anthracene, C30H17Br, (II), adopts a highly nonplanar `manta‐ray' shape, with the H atoms in the interior of the molecule within van der Waals contact distances. The packing of the significantly twisted molecules of (I) generates large voids which are filled by benzene solvent molecules, while molecules of (II) stack compactly with all C—Br bonds parallel within the stack.  相似文献   

10.
The stilbene derivative 1,2,3‐trimethoxy‐4‐[(E)‐2‐phenylvinyl]benzene, C17H18O3, (I), and its homocoupling co‐product (E,E)‐1,4‐bis(2,3,4‐trimethoxyphenyl)buta‐1,3‐diene, C22H26O6, (II), both have double bonds in trans conformations in their conjugated linkages. In the structure of stilbene (I), the aromatic rings deviate significantly from coplanarity, in contrast with coproduct (II), the core of which is rigorously planar. The deviation in stilbene (I) seems to be driven by intermolecular electrostatic interactions. Diene (II) sits on a crystallographic inversion centre, which bisects the conjugated linkage.  相似文献   

11.
In the title compound, C22H18N4·2H2O, the organic fragment lies across a centre of inversion in the P21/n space group. The water molecules form C(2)‐type hydrogen‐bonded chains which are linked to the 1,4‐bis(1H‐benzimidazol‐1‐ylmethyl)benzene molecules through O—H...N hydrogen bonds, forming sheets reinforced by π–π stacking interactions between the aromatic rings within the layers.  相似文献   

12.
The Biginelli‐type compounds, 5‐unsubstituted 3,4‐dihydropyrimdin‐2(1H)‐ones were synthesized by a one‐pot three‐component condensation of aromatic aldehydes, aromatic ketones and urea in the presence of SnCl4 · 5H2O under solvent‐free conditions. The advantages of this method are short reaction time (4–10 min), excellent yields (74–97%), inexpensive catalyst and solvent‐free conditions. A plausible mechanism was proposed.  相似文献   

13.
2,5‐Diethoxy‐1,4‐bis[(trimethylsilyl)ethynyl]benzene, C20H30O2Si2, (I), constitutes one of the first structurally characterized examples of a family of compounds, viz. the 2,5‐dialkoxy‐1,4‐bis[(trimethylsilyl)ethynyl]benzene derivatives, used in the preparation of oligo(phenyleneethynylene)s via Pd/Cu‐catalysed cross‐coupling. 2,5‐Diethoxy‐1,4‐diethynylbenzene, C14H14O2, (II), results from protodesilylation of (I). 1,4‐Diethynyl‐2,5‐bis(heptyloxy)benzene, C24H34O2, (III), is a long alkyloxy chain analogue of (II). The molecules of compounds (I)–(III) are located on sites with crystallographic inversion symmetry. The large substituents either in the alkynyl group or in the benzene ring have a marked effect on the packing and intermolecular interactions of adjacent molecules. All the compounds exhibit weak intermolecular interactions that are only slightly shorter than the sum of the van der Waals radii of the interacting atoms. Compound (I) displays C—H...π interactions between the methylene H atoms and the acetylenic C atom. Compound (II) shows π–π interactions between the acetylenic C atoms, complemented by C—H...π interactions between the methyl H atoms and the acetylenic C atoms. Unlike (I) or (II), compound (III) has weak nonclassical hydrogen‐bond‐type interactions between the acetylenic H atoms and the ether O atoms.  相似文献   

14.
The behavior of N,N′‐bis(pyridin‐2‐ylmethylene)benzene‐1,4‐diamine (L) towards zinc(II), cadmium(II), and mercury(II) chlorides was studied in methanol solutions. In the presence of metal ions, the organic molecule was decomposed to N‐(pyridin‐2‐ylmethylene)benzene‐1,4‐diamine (L′), and complexes of general formula M(L′)Cl2 were isolated from the mixture. The complexes were identified by elemental analysis, IR, 1H NMR, and 13C NMR spectra, and their structures were further confirmed by single‐crystal X‐ray diffraction analysis of Zn(L′)Cl2 and Hg(L′)Cl2. In the solid state of both complexes, the molecules are stabilized by N–H ··· Cl hydrogen bonds and aromatic π–π stacking interactions.  相似文献   

15.
A cross‐conjugated hexaphyrin that carries two meso‐oxacyclohexadienylidenyl (OCH) groups 9 was synthesized from the condensation of 5,10‐bis(pentafluorophenyl)tripyrrane with 3,5‐di‐tert‐butyl‐4‐hydroxybenzaldehyde. The reduction of 9 with NaBH4 afforded the Möbius aromatic [28]hexaphyrin 10 . Bis‐rhodium complex 11 , prepared from the reaction of 10 with [{RhCl(CO)2}2], displays strong Hückel antiaromatic character because of the 28 π electrons that occupy the conjugated circuit on the enforced planar structure. The oxidation of 11 with 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone (DDQ) yielded complexes 12 and 13 depending upon the reaction conditions. Both 12 and 13 are planar owing to bis‐rhodium metalation. Although complex 12 bears two meso‐OCH groups at the long sides and is quinonoidal and nonaromatic in nature, complex 13 bears 3,5‐di‐tert‐butyl‐4‐hydroxyphenyl and OCH groups and exhibits a moderate diatropic ring current despite its cross‐conjugated electronic circuit. The diatropic ring current increases upon increasing the solvent polarity, most likely due to an increased contribution of an aromatic zwitterionic resonance hybrid.  相似文献   

16.
A novel three‐dimensional (3D) ZnII coordination polymer, namely, poly[[[1,4‐bis(pyridin‐4‐yl)benzene](μ3‐3,3′‐{[1,3‐phenylenebis(methylene)]bis(oxy)}dibenzoato)zinc(II)] 1,4‐bis(pyridin‐4‐yl)benzene], {[Zn(C22H16O6)(C16H12N2)]·C16H12N2}n or {[Zn(PMBD)(DPB)]·DPB}n, 1 , where H2PMBD is 3,3′‐{[1,3‐phenylenebis(methylene)]bis(oxy)}dibenzoic acid and DPB is 1,4‐bis(pyridin‐4‐yl)benzene, has been synthesized by self‐assembly using zinc nitrate, a semi‐rigid dicarboxylic acid and a nitrogen‐containing ligand. The single‐crystal X‐ray structure determination indicates that 1 possesses an intriguing 3D architecture with a 4‐connected uninodal cds topology, which is constructed from dinuclear {Zn2} clusters and V‐shaped PMBD2? linkers. Compound 1 exhibits excellent photocatalytic activity on the degradation of the organic dyes Rhodamine B (RhB), Rhodamine 6G (Rh6G) and Methyl Red (MR).  相似文献   

17.
Hydrogen‐bonded aromatic–aliphatic polyester–amides (PEAs) were prepared by solution/melt polycondensation of aromatic–aliphatic amidodiols 1,4‐bis(4‐hydroxybutyramide)benzene (BHBB), 1,4‐bis(5‐hydroxy pentamide)benzene, 1,4‐bis(6‐hydroxyhexamide)benzene, 1,4‐bis(4‐hydroxybutyramidexylene), 1,4‐bis(5‐hydroxypentamidexylene, 1,4‐bis(4‐hydroxybutyramide)benzene, and 1,4‐bis(6‐hydroxyhexamidexylene) with terephthaloyl chloride/dimethyl terephthalate. Aromatic–aliphatic amido diols were prepared by the aminolysis of γ‐butyrolactone, δ‐valerolactone, and ?‐caprolactone with aromatic diamines such as paraphenylene diamine and paraxylene diamine. The monomers and polymers were characterized by chemical analysis (hydroxyl value and elemental analysis), Fourier transform infrared spectroscopy, 1H NMR, and 13C NMR. The thermal‐ and phase‐transition behaviors of the polymers were investigated by differential scanning calorimetry in combination with hot‐stage optical microscopy. Crystallinity of polymers was examined with wide‐angle X‐ray diffraction. The polymers exhibited liquid crystallinity with layered structures formed by self‐organization of the hetero intermolecular hydrogen‐bonded networks indicating smectic phases except for PEAs prepared from BHBB. The hydrogen atom of the phenyl‐substituent group forces the neighboring carbonyl groups out of plane of the rings preventing formation of layered structures in the case of BHBB. The PEAs retained intermolecular hydrogen bonding even in the mesomorphic state, and variations in the hydrogen‐bonded lamellae/micelles might be responsible for the variations from one smectic to another texture. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 335–346, 2003  相似文献   

18.
With the rapid development of metal–organic frameworks (MOFs), a variety of MOFs and their derivatives have been synthesized and reported in recent years. Commonly, multifunctional aromatic polycarboxylic acids and nitrogen‐containing ligands are employed to construct MOFs with fascinating structures. 4,4′,4′′‐(1,3,5‐Triazine‐2,4,6‐triyl)tribenzoic acid (H3TATB) and the bidentate nitrogen‐containing ligand 1,3‐bis[(imidazol‐1‐yl)methyl]benzene (bib) were selected to prepare a novel ZnII‐MOF under solvothermal conditions, namely poly[[tris{μ‐1,3‐bis[(imidazol‐1‐yl)methyl]benzene}bis[μ3‐4,4′,4′′‐(1,3,5‐triazine‐2,4,6‐triyl)tribenzoato]trizinc(II)] dimethylformamide disolvate trihydrate], {[Zn3(C24H12N3O6)2(C14H14N4)3]·2C3H7NO·3H2O}n ( 1 ). The structure of 1 was characterized by single‐crystal X‐ray diffraction, IR spectroscopy and powder X‐ray diffraction. The properties of 1 were investigated by thermogravimetric and fluorescence analysis. Single‐crystal X‐ray diffraction shows that 1 belongs to the monoclinic space group Pc. The asymmetric unit contains three crystallographically independent ZnII centres, two 4,4′,4′′‐(1,3,5‐triazine‐2,4,6‐triyl)tribenzoate (TATB3?) anions, three complete bib ligands, one and a half free dimethylformamide molecules and three guest water molecules. Each ZnII centre is four‐coordinated and displays a distorted tetrahedral coordination geometry. The ZnII centres are connected by TATB3? anions to form an angled ladder chain with large windows. Simultaneously, the bib ligands link ZnII centres to give a helical Zn–bib–Zn chain. Furthermore, adjacent ladders are bridged by Zn–bib–Zn chains to form a fascinating three‐dimensional self‐penetrated framework with the short Schläfli symbol 65·7·813·9·10. In addition, the luminescence properties of 1 in the solid state and the fluorescence sensing of metal ions in suspension were studied. Significantly, compound 1 shows potential application as a fluorescent sensor with sensing properties for Zr4+ and Cu2+ ions.  相似文献   

19.
The reactions of (R)‐ and (S)‐4‐(1‐carboxyethoxy)benzoic acid (H2CBA) with 1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene (1,3‐BMIB) ligands afforded a pair of homochiral coordination polymers (CPs), namely, poly[[[μ‐1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene][μ‐(S)‐4‐(1‐carboxylatoethoxy)benzoato]zinc(II)] monohydrate], {[Zn(C10H8O5)(C14H14N4)]·H2O}n or {[Zn{(S)‐CBA}(1,3‐BMIB)]·H2O}n ( 1‐L ), and poly[[[μ‐1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene][μ‐(R)‐4‐(1‐carboxylatoethoxy)benzoato]zinc(II)] monohydrate] ( 1‐D ). Three kinds of helical chains exist in compounds 1‐D and 1‐L , which are constructed from ZnII atoms, 1,3‐BMIB ligands and/or CBA2? ligands. When the as‐synthesized crystals of 1‐L and 1‐D were further heated in the mother liquor or air, poly[[μ‐1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene][μ‐(S)‐4‐(1‐carboxylatoethoxy)benzoato]zinc(II)], [Zn(C10H8O5)(C14H14N4)]n or [Zn{(S)‐CBA}(1,3‐BMIB)]n ( 2‐L ), and poly[[μ‐1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene][μ‐(R)‐4‐(1‐carboxylatoethoxy)benzoato]zinc(II)] ( 2‐D ) were obtained, respectively. The single‐crystal structure analysis revealed that 2‐L and 2‐D only contained one type of helical chain formed by ZnII atoms and 1,3‐BMIB and CBA2? ligands, which indicated that the helical chains were reconstructed though solid‐to‐solid transformation. This result not only means the realization of helical transformation, but also gives a feasible strategy to build homochiral CPs.  相似文献   

20.
The hydrothermal synthesis of the novel complex poly[aqua(μ4‐benzene‐1,2,3‐tricarboxylato)[μ2‐4,4′‐(hydrazine‐1,2‐diylidenedimethanylylidene)dipyridine](μ3‐hydroxido)dizinc(II)], [Zn(C9H3O6)(OH)(C12H10N4)(H2O)]n, is described. The benzene‐1,2,3‐tricarboxylate ligand connects neighbouring Zn4(OH)2 secondary building units (SBUs) producing an infinite one‐dimensional chain. Adjacent one‐dimensional chains are connected by the N,N′‐bis[(pyridin‐4‐yl)methylidene]hydrazine ligand, forming a two‐dimensional layered structure. Adjacent layers are stacked to generate a three‐dimensional supramolecular architecture via O—H...O hydrogen‐bond interactions. The thermal stability of this complex is described and the complex also appears to have potential for application as a luminescent material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号