首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the template‐directed synthesis of BlueCage6+, a macrobicyclic cyclophane composed of six pyridinium rings fused with two central triazines and bridged by three paraxylylene units. These moieties endow the cage with a remarkably electron‐poor cavity, which makes it a powerful receptor for polycyclic aromatic hydrocarbons (PAHs). Upon forming a 1:1 complex with pyrene in acetonitrile, however, BlueCage?6 PF6 exhibits a lower association constant Ka than its progenitor ExCage?6 PF6. A close inspection reveals that the six PF6? counterions of BlueCage6+ occupy the cavity in a fleeting manner as a consequence of anion–π interactions and, as a result, compete with the PAH guests. This conclusion is supported by a one order of magnitude increase in the Ka value for pyrene in BlueCage6+ when the PF6? counterions are replaced by much bulkier anions. The presence of anion–π interactions is supported by X‐ray crystallography, and confirms the presence of a PF6? counterion inside its cavity.  相似文献   

2.
Phenol‐based macrocyclic arenes have been widely used in supramolecular chemistry, significantly enriching the toolbox of the field. In contrast, naphthol‐based macrocyclic arenes are rather underdeveloped. Very recently, Gaeta and co‐workers successfully synthesized such macrocycles (referred to as prism[n]arenes) with good guest‐binding ability by reacting 2,6‐dimethoxynaphthalene with paraformaldehyde under optimized conditions. In view of the simple synthesis and good host–guest chemistry, we anticipate that this macrocycle will find similar success and wide applications as the phenol‐based macrocyclic arenes.  相似文献   

3.
4.
There is broad interest in molecular encapsulation as such systems can be utilized to stabilize guests, facilitate reactions inside a cavity, or give rise to energy‐transfer processes in a confined space. Detailed understanding of encapsulation events is required to facilitate functional molecular encapsulation. In this contribution, it is demonstrated that Ir and Rh‐Cp‐type metal complexes can be encapsulated inside a self‐assembled M6L4 metallocage only in the presence of an aromatic compound as a second guest. The individual guests are not encapsulated, suggesting that only the pair of guests can fill the void of the cage. Hence, selective co‐encapsulation is observed. This principle is demonstrated by co‐encapsulation of a variety of combinations of metal complexes and aromatic guests, leading to several ternary complexes. These experiments demonstrate that the efficiency of formation of the ternary complexes depends on the individual components. Moreover, selective exchange of the components is possible, leading to formation of the most favorable complex. Besides the obvious size effect, a charge‐transfer interaction may also contribute to this effect. Charge‐transfer bands are clearly observed by UV/Vis spectrophotometry. A change in the oxidation potential of the encapsulated electron donor also leads to a shift in the charge‐transfer energy bands. As expected, metal complexes with a higher oxidation potential give rise to a higher charge‐transfer energy and a larger hypsochromic shift in the UV/Vis spectrum. These subtle energy differences may potentially be used to control the binding and reactivity of the complexes bound in a confined space.  相似文献   

5.
6.
Positive cooperativity achieved through activating weak non‐covalent interactions is common in biological assemblies but is rarely observed in synthetic complexes. Two new molecular tubes have been synthesized and the syn isomer binds DABCO‐based organic cations with high orientational selectivity. Surprisingly, the ternary complex with two hosts and one guest shows a high cooperativity factor (α=580), which is the highest reported for synthetic systems without involving ion‐pairing interactions. The X‐ray single‐crystal structure revealed that the strong positive cooperativity likely originates from eight C?H???O hydrogen bonds between the two head‐to‐head‐arranged syn tube molecules. These relatively weak hydrogen bonds were not observed in the free hosts and only emerged in the complex. Furthermore, this complex was used as a basic motif to construct a robust [2+2] cyclic assembly, thus demonstrating its potential in molecular self‐assembly.  相似文献   

7.
8.
Rotaxane‐based molecular shuttles are often operated using low‐symmetry axles and changing the states of the binding stations. A molecular shuttle capable of directional shuttling of an acid‐responsive cone‐like macrocycle on a single‐state symmetric dumbbell axle is now presented. The axle contains three binding stations: one symmetric di(quaternary ammonium) station and two nonsymmetric phenyl triazole stations arranged in opposite orientations. Upon addition of an acid, the protonated macrocycle shuttles from the di(quaternary ammonium) station to the phenyl triazole binding station closer to its butyl groups. This directional shuttling presumably originates from charge repulsion and an orientational binding preference between the cone‐like cavity and the nonsymmetric phenyl triazole station. This mechanism for achieving directional shuttling by manipulating only the wheels instead of the tracks is new for artificial molecular machines.  相似文献   

9.
Enzyme mimics or artificial enzymes are a class of catalysts that have been actively pursued for decades and have heralded much interest as potentially viable alternatives to natural enzymes. Aside from having catalytic activities similar to their natural counterparts, enzyme mimics have the desired advantages of tunable structures and catalytic efficiencies, excellent tolerance to experimental conditions, lower cost, and purely synthetic routes to their preparation. Although still in the midst of development, impressive advances have already been made. Enzyme mimics have shown immense potential in the catalysis of a wide range of chemical and biological reactions, the development of chemical and biological sensing and anti‐biofouling systems, and the production of pharmaceuticals and clean fuels. This Review concerns the development of various types of enzyme mimics, namely polymeric and dendrimeric, supramolecular, nanoparticulate and proteinic enzyme mimics, with an emphasis on their synthesis, catalytic properties and technical applications. It provides an introduction to enzyme mimics and a comprehensive summary of the advances and current standings of their applications, and seeks to inspire researchers to perfect the design and synthesis of enzyme mimics and to tailor their functionality for a much wider range of applications.  相似文献   

10.
Bowl‐shaped macrocycles have the distinctive feature that their two sides are differentiated, and thus can be developed into elaborate hosts that fix a target molecule in a controlled geometry through multipoint interactions. We now report the synthesis of a bowl‐shaped macrocyclic trimer of the boron–dipyrrin (BODIPY) complex and its unidirectional threading of guest molecules. Six polarized Bδ+?Fδ‐ bonds are directed towards the center of the macrocycle, which enables strong recognition of cationic guests. Specifically, the benzylbutylammonium ion is bound in a manner in which the benzyl group is located at the convex face of the bowl and the butyl group at its concave face. Furthermore, adrenaline was strongly captured on the convex side of the bowl by hydrogen bonding, Coulomb forces, and C?H???π interactions.  相似文献   

11.
12.
Engineering self‐templating inorganic architectures is critical for the development of bottom‐up approaches to nanoscience, but systems with a hierarchy of templates are elusive. Herein we describe that the cluster‐anion‐templated (CAT) assembly of a {CAT}?{Mo24Fe12} macrocycle forms a giant ca. 220 nm3 unit cell containing 16 macrocycles clustered into eight face‐shared tetrahedral cluster‐of‐clusters assemblies. We show that {CAT}?{Mo24Fe12} with different CATs gives the compounds 1 – 4 for CAT=Anderson {FeMo6} ( 1 ), Keggin {PMo12} ( 2 ), Dawson {P2W18} ( 3 ), and {Mo12O36(HPO3)2} ( 4 ) polyoxometalates. “Template‐free” assembly can be achieved, whereby the macrocycle components can also form a template in situ allowing template to macrocycle to superstructure formation and the ability to exchange the templates. Furthermore, the transformation of template clusters within the inorganic macrocycle {Mo24Fe12} allows the self‐generation of an uncapped {Mo12O36(HPO3)2} in compound 4 .  相似文献   

13.
The rational design of a flexible molecular box, oAzoBox 4+, incoporating both photochromic and supramolecular recognition motifs is described. We exploit the E?Z photoisomerization properties of azobenzenes to alter the shape of the cavity of the macrocycle upon absorption of light. Imidazolium motifs are used as hydrogen‐bonding donor components, allowing for sequestration of small molecule guests in acetonitrile. Upon EZ photoisomerization of oAzoBox 4+ the guest is expelled from the macrocyclic cavity.  相似文献   

14.
The synthesis of a centrally functionalized, ribbon‐shaped [6]polynorbornane ligand L that self‐assembles with PdII cations into a {Pd2 L 4} coordination cage is reported. The shape‐persistent {Pd2 L 4} cage contains two axial cationic centers and an array of four equatorial H‐bond donors pointing directly towards the center of the cavity. This precisely defined supramolecular environment is complementary to the geometry of classic octahedral complexes [M(XY)6] with six diatomic ligands. Very strong binding of [Pt(CN)6]2? to the cage was observed, with the structure of the host–guest complex {[Pt(CN)6]@Pd2L4} supported by NMR spectroscopy, MS, and X‐ray data. The self‐assembled shell imprints its geometry on the encapsulated guest, and desymmetrization of the octahedral platinum species by the influence of the D4h‐symmetric second coordination sphere was evidenced by IR spectroscopy. [Fe(CN)6]3? and square‐planar [Pt(CN)4]2? were strongly bound. Smaller octahedral anions such as [SiF6]2?, neutral carbonyl complexes ([M(CO)6]; M=Cr, Mo, W) and the linear [Ag(CN)2]? anion were only weakly bound, showing that both size and charge match are key factors for high‐affinity binding.  相似文献   

15.
The intriguing dual‐emission behavior of p‐ dimethylaminobenzonitrile (DMABN) and the identity of the associated excited states is, arguably, the most extensively investigated and also controversially discussed molecule‐ specific phenomenon of modern photochemistry. We have now found a new, third fluorescence band when DMABN is encapsulated within the water‐soluble molecular container cucurbit[8]uril (CB8). It is centered between the previously observed emissions and assigned to the elusive excimer emission from DMABN through 1:2 CB8:DMABN complex formation. Heating of the CB8 ? (DMABN)2 complex from 0 to 100 °C results in the dissociation of the ternary complex and restoration of the dual‐emission properties of the monomer. Alternatively, monomer emission can be obtained by selecting cucurbit[7]uril (CB7), a host homologue that is too small to accommodate two DMABN molecules, or by introducing ethyl instead of methyl groups at the amino terminus of the aminobenzonitrile guest.  相似文献   

16.
Since 1996, a growing number of strained macrocycles, comprising only sp2‐ or sp‐hybridized carbon atoms within the ring, have become synthetically accessible, with the [n]cycloparaphenyleneacetylenes ( CPPAs ) and the [n]cycloparaphenylenes ( CPPs ) being the most prominent examples. Now that robust and relatively general synthetic routes toward a diverse range of nanohoop structures have become available, the research focus is beginning to shift towards the exploration of their properties and applications. From a supramolecular chemistry perspective, these macrocycles offer unique opportunities as a result of their near‐perfect circular shape, the unusually high degree of shape‐persistence, and the presence of both convex and concave π‐faces. In this Minireview, we give an overview on the use of strained carbon‐rich nanohoops in host–guest chemistry, the preparation of mechanically interlocked architectures, and crystal engineering.  相似文献   

17.
18.
19.
Supramolecular polymers (SPs) have received great attention because of their potential for various practical applications. As part of our search for SPs that are highly fluorescent in aqueous media, we designed a system based on a cucurbit[8]uril (CB[8]) host and a newly designed cyanostilbene guest. Fluorescence quantum yields of ≈0 % in the disassembled monomer state and 91 % in the CB[8]‐induced SP state were obtained. The intriguing photophysical properties of the SP are elucidated through detailed experimental and computational analysis, paving the way towards a fascinating class of water‐soluble fluorescent SPs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号