首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vehicle routing problem (VRP) with simultaneous pickup and delivery (VRPSPD) is an extension of the classical capacitated VRP (CVRP). In this paper, we present the saving heuristic and the parallel saving heuristic for VRPSPD. Checking the feasibility of a route in VRPSPD is difficult because of the fluctuating load on the route. In the saving heuristic, a new route is created by merging the two existing routes. We use a cumulative net-pickup approach for checking the feasibility when two existing routes are merged. The numerical results show that the performance of the proposed heuristics is qualitatively better than the existing insertion-based heuristics.  相似文献   

2.
The single vehicle routing problem with pickups and deliveries (SVRPPD) is defined on a graph in which pickup and delivery demands are associated with the customer vertices. The problem consists of designing a least cost route for a vehicle of capacity Q. Each customer is allowed to be visited once for a combined pickup and delivery, or twice if these two operations are performed separately. This article proposes a mixed integer linear programming model for the SVRPPD. It introduces the concept of general solution which encompasses known solution shapes such as Hamiltonian, double-path and lasso. Classical construction and improvement heuristics, as well as a tabu search heuristic, are developed and tested over several instances. Computational results show that the best solutions generated by the heuristics are frequently non-Hamiltonian and may contain up to two customers visited twice.  相似文献   

3.
Just-in-time (JIT) trucking service, i.e., arriving at customers within specified time windows, has become the norm for freight carriers in all stages of supply chains. In this paper, a JIT pickup/delivery problem is formulated as a stochastic dynamic traveling salesman problem with time windows (SDTSPTW). At a customer location, the vehicle either picks up goods for or delivers goods from the depot, but does not provide moving service to transfer goods from one location to another. Such routing problems are NP-hard in deterministic settings, and in our context, complicated further by the stochastic, dynamic nature of the problem. This paper develops an efficient heuristic for the SDTSPTW with hard time windows. The heuristic is shown to be useful both in controlled numerical experiments and in applying to a real-life trucking problem.  相似文献   

4.
This paper presents an approximation algorithm for a vehicle routing problem on a tree-shaped network with a single depot where there are two types of demands, pickup demand and delivery demand. Customers are located on nodes of the tree, and each customer has a positive demand of pickup and/or delivery.Demands of customers are served by a fleet of identical vehicles with unit capacity. Each vehicle can serve pickup and delivery demands. It is assumed that the demand of a customer is splittable, i.e., it can be served by more than one vehicle. The problem we are concerned with in this paper asks to find a set of tours of the vehicles with minimum total lengths. In each tour, a vehicle begins at the depot with certain amount of goods for delivery, visits a subset of the customers in order to deliver and pick up goods and returns to the depot. At any time during the tour, a vehicle must always satisfy the capacity constraint, i.e., at any time the sum of goods to be delivered and that of goods that have been picked up is not allowed to exceed the vehicle capacity. We propose a 2-approximation algorithm for the problem.  相似文献   

5.
本文结合汽车零部件第三方物流的实际背景,提出了带时间窗的可分车运输同时收发车辆路径问题(简称SVRPSPDTW),并给出了问题的数学模型,同时提出两个求解该问题的启发式算法,最后进行了数值试验.由于没有可以利用的算例,本文在Solomn测试基准库的基础上构建了针对新问题的算例.计算结果表明,所有算例计算时间均不超过1秒,且算法1无论是从车辆的使用数还是从车辆行驶的路径总长度上都明显优于算法2,从而说明算法1是寻找SVRPSPDTW问题初始可行解的较为有效的算法.  相似文献   

6.
We study a vehicle routing problem in which vehicles are dispatched multiple times a day for product delivery. In this problem, some customer orders are known in advance while others are uncertain but are progressively realized during the day. The key decisions include determining which known orders should be delivered in the first dispatch and which should be delivered in a later dispatch, and finding the routes and schedules for customer orders. This problem is formulated as a two-stage stochastic programming problem with the objective of minimizing the expected total cost. A worst-case analysis is performed to evaluate the potential benefit of the stochastic approach against a deterministic approach. Furthermore, a sample-based heuristic is proposed. Computational experiments are conducted to assess the effectiveness of the model and the heuristic.   相似文献   

7.
In this study, a heuristic free from parameter tuning is introduced to solve the vehicle routing problem (VRP) with two conflicting objectives. The problem which has been presented is the designing of optimal routes: minimizing both the number of vehicles and the maximum route length. This problem, even in the case of its single objective form, is NP-hard. The proposed self-tuning heuristic (STH) is based on local search and has two parameters which are updated dynamically throughout the search process. The most important advantage of the algorithm is the application convenience for the end-users. STH is tested on the instances of a multi-objective problem in school bus routing and classical vehicle routing. Computational experiments, when compared with the prior approaches proposed for the multi-objective routing of school buses problem, confirm the effectiveness of STH. STH also finds high-quality solutions for multi-objective VRPs.  相似文献   

8.
The vehicle routing problem with stochastic demands consists in designing transportation routes of minimal expected cost to satisfy a set of customers with random demands of known probability distributions. This paper proposes a simple yet effective heuristic approach that uses randomized heuristics for the traveling salesman problem, a tour partitioning procedure, and a set partitioning formulation to sample the solution space and find high-quality solutions for the problem. Computational experiments on benchmark instances from the literature show that the proposed approach is competitive with the state-of-the-art algorithm for the problem in terms of both accuracy and efficiency. In experiments conducted on a set of 40 instances, the proposed approach unveiled four new best-known solutions (BKSs) and matched another 24. For the remaining 12 instances, the heuristic reported average gaps with respect to the BKS ranging from 0.69 to 0.15 % depending on its configuration.  相似文献   

9.
We analyze a business model for e-supermarkets to enable multi-product sourcing capacity through co-opetition (collaborative competition). The logistics aspect of our approach is to design and execute a network system where “premium” goods are acquired from vendors at multiple locations in the supply network and delivered to customers. Our specific goals are to: (i) investigate the role of premium product offerings in creating critical mass and profit; (ii) develop a model for the multiple-pickup single-delivery vehicle routing problem in the presence of multiple vendors; and (iii) propose a hybrid solution approach. To solve the problem introduced in this paper, we develop a hybrid metaheuristic approach that uses a Genetic Algorithm for vendor selection and allocation, and a modified savings algorithm for the capacitated VRP with multiple pickup, single delivery and time windows (CVRPMPDTW). The proposed Genetic Algorithm guides the search for optimal vendor pickup location decisions, and for each generated solution in the genetic population, a corresponding CVRPMPDTW is solved using the savings algorithm. We validate our solution approach against published VRPTW solutions and also test our algorithm with Solomon instances modified for CVRPMPDTW.  相似文献   

10.
This paper considers the vehicle routing problem with pickups and deliveries (VRPPD) where the same customer may require both a delivery and a pickup. This is the case, for instance, of breweries that deliver beer or mineral water bottles to a set of customers and collect empty bottles from the same customers. It is possible to relax the customary practice of performing a pickup when delivering at a customer, and postpone the pickup until the vehicle has sufficient free capacity. In the case of breweries, these solutions will often consist of routes in which bottles are first delivered until the vehicle is partly unloaded, then both pickup and delivery are performed at the remaining customers, and finally empty bottles are picked up from the first visited customers. These customers are revisited in reverse order, thus giving rise to lasso shaped solutions. Another possibility is to relax the traditional problem even more and allow customers to be visited twice either in two different routes or at different times on the same route, giving rise to a general solution. This article develops a tabu search algorithm capable of producing lasso solutions. A general solution can be reached by first duplicating each customer and generating a Hamiltonian solution on the extended set of customers. Test results show that while general solutions outperform other solution shapes in term of cost, their computation can be time consuming. The best lasso solution generated within a given time limit is generally better than the best general solution produced with the same computing effort.  相似文献   

11.
In this paper we study a scheduling model that simultaneously considers production scheduling, material supply, and product delivery. One vehicle with limited loading capacity transports unprocessed jobs from the supplier’s warehouse to the factory in a fixed travelling time. Another capacitated vehicle travels between the factory and the customer to deliver finished jobs to the customer. The objective is to minimize the arrival time of the last delivered job to the customer. We show that the problem is NP-hard in the strong sense, and propose an O(n) time heuristic with a tight performance bound of 2. We identify some polynomially solvable cases of the problem, and develop heuristics with better performance bounds for some special cases of the problem. Computational results show that all the heuristics are effective in producing optimal or near-optimal solutions quickly.  相似文献   

12.
The paper extends the branch and bound algorithm of Little, Murty, Sweeney, and Karel to the traveling salesman problem with pickup and delivery customers, where each pickup customer is required to be visited before its associated delivery customer. The problems considered include single and multiple vehicle cases as well as infinite and finite capacity cases. Computational results are reported.  相似文献   

13.
This paper describes a heuristic for the Vehicle Routing and Scheduling Problem with Time Windows (VRSPTW). Unique to this problem are the so-called time windows, i.e. time slots during which the vehicle must arrive at the customer to deliver the goods. The heuristic builds on the well-known Clarke and Wright Savings method with an additional criterion that models an intuitive view of time influence on route building. Experiments show that this added criterion yields significantly better solutions to the VRSPTW than pure routing heuristics, and also compares favorably to other new heuristics, developed specifically for the VRSPTW.  相似文献   

14.
In shipping services, the goal is to propose cyclical routes which ensure transport of required goods among the main centers of the regions. It is classified as a pickup and delivery problem with split demand and reloading. The objective is to minimize total shipping costs, or the total length of all cyclical routes. The optimum solution gives a number of vehicles going on arcs of the communication network and the amount of goods being transported on the arcs. Consequently, cyclical routes and depots are proposed for all vehicles. First, the multi-graph, in which each directed arc corresponds to exactly one vehicle, is generated. The multi-graph satisfies the condition that the number of arcs entering each node equals the number of arcs exiting the node. The heuristic method of loading goods onto a vehicle in the pickup node and to transport it to the delivery node without reloading onto another vehicle is proposed. The method is verified in the case study carried out on the DHL company.  相似文献   

15.
This paper addresses a location-routing problem with simultaneous pickup and delivery (LRPSPD) which is a general case of the location-routing problem. The LRPSPD is defined as finding locations of the depots and designing vehicle routes in such a way that pickup and delivery demands of each customer must be performed with same vehicle and the overall cost is minimized. We propose an effective branch-and-cut algorithm for solving the LRPSPD. The proposed algorithm implements several valid inequalities adapted from the literature for the problem and a local search based on simulated annealing algorithm to obtain upper bounds. Computational results, for a large number of instances derived from the literature, show that some instances with up to 88 customers and 8 potential depots can be solved in a reasonable computation time.  相似文献   

16.
In this article, we introduce a new variant of min–max vehicle routing problem, where various types of customer demands are satisfied by heterogeneous fleet of vehicles and split delivery of services is allowed. We assume that vehicles may serve one or more types of service with unlimited service capacity, and varying service and transfer speed. A heuristic solution approach is proposed. We report the solutions for several test problems.  相似文献   

17.
研究了不确定同时取送货车辆路径问题(VRPSPD),考虑运行环境的不确定性,顾客时间窗口要求和对顾客同时进行取货和送货服务的情况,以运作成本最低和顾客满意度最高为决策目标,构建不确定VRPSPD数学模型。模型中,引入模糊随机理论来描述决策环境中的双重不确定性,假定顾客需求量(送货量)和取货量是模糊随机变量。随后,提出基于模糊随机算子的改进粒子群算法对模型进行求解。为了适应模型特点和提高算法效率,设计合理的编码和解码过程,制定多个适应度函数方案处理多目标问题,并应用更加科学的更新策略。最后在应用案例中,通过参数测试获取合理的算法参数取值,采用计算结果分析和求解算法测评验证模型和算法的有效性。  相似文献   

18.
We examine neighborhood structures for heuristic search applicable to a general class of vehicle routing problems (VRPs). Our methodology utilizes a cyclic-order solution encoding, which maps a permutation of the customer set to a collection of many possible VRP solutions. We identify the best VRP solution in this collection via a polynomial-time algorithm from the literature. We design neighborhoods to search the space of cyclic orders. Utilizing a simulated annealing framework, we demonstrate the potential of cyclic-order neighborhoods to facilitate the discovery of high quality a priori solutions for the vehicle routing problem with stochastic demand (VRPSD). Without tailoring our solution procedure to this specific routing problem, we are able to match 16 of 19 known optimal VRPSD solutions. We also propose an updating procedure to evaluate the neighbors of a current solution and demonstrate its ability to reduce the computational expense of our approach.  相似文献   

19.
We address a problem of vehicle routing that arises in picking up and delivering full container load from/to an intermodal terminal. The substantial cost and time savings are expected by efficient linkage between pickup and delivery tasks, if the time of tasks and the suitability of containers for cargo allow. As this problem is NP-hard, we develop a subgradient heuristic based on a Lagrangian relaxation which enables us to identify a near optimal solution. The heuristic consists of two sub-problems: the classical assignment problem and the generalized assignment problem. As generalized assignment problem is also NP-hard, we employ an efficient solution procedure for a bin packing based problem, which replaces the generalized assignment problem. The heuristic procedure is tested on a wide variety of problem examples. The test results demonstrate that the procedure developed here can efficiently solve large instances of the problem.  相似文献   

20.
We consider the Traveling Salesman Problem with Pickup and Delivery (TSPPD) where the same costumers might require both deloverie of goods and pickup of other goods. All the goods should be transported from/to the same depot. A vehicle on a TSPPD-tour could often get some practical problems when arranging the load. Even if the vehicle has enough space for all the pickups, one has to consider that they are stored in a way that doesn't block the delivery for the next customer. In real life problems this occurs for instance for breweries when they deliver bottles of beer or mineral water and collects empty bottles from the same customers on the same tour. In these situations we could relax the constraints of only checking Hamiltonian tours, and also try solutions that can visit customers in a way giving rise to a ‘alsso’ model. A solution which first only delivers bottles until the vehicle is partly unloaded, then do both delivery and pickup at the remaining customers and at last picks up the empty bottle from the first visited customers, could in these situations be better than a pure Hamiltonian tour, at least in a practical setting. To find such solutions, we will use the metaheuristic Tabu Search on some well known TSPPD-problems, and compare them to other kinds of solutions on the same problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号