首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper considers a single machine scheduling problem with the learning effect and multiple availability constraints that minimizes the total completion time. To solve this problem, a new binary integer programming model is presented, and a branch-and-bound algorithm is also developed for solving the given problem optimally. Since the problem is strongly NP-hard, to find the near-optimal solution for large-sized problems within a reasonable time, two meta-heuristics; namely, genetic algorithm and simulated annealing are developed. Finally, the computational results are provided to compare the result of the binary integer programming, branch-and-bound algorithm, genetic algorithm and simulated annealing. Then, the efficiency of the proposed algorithms is discussed.  相似文献   

2.
The problem tackled in this paper deals with products of a finite number of triangular matrices in Max-Plus algebra, and more precisely with an optimization problem related to the product order. We propose a polynomial time optimization algorithm for 2×2 matrices products. We show that the problem under consideration generalizes numerous scheduling problems, like single machine problems or two-machine flow shop problems. Then, we show that for 3×3 matrices, the problem is NP-hard and we propose a branch-and-bound algorithm, lower bounds and upper bounds to solve it. We show that an important number of results in the literature can be obtained by solving the presented problem, which is a generalization of single machine problems, two- and three-machine flow shop scheduling problems. The branch-and-bound algorithm is tested in the general case and for a particular case and some computational experiments are presented and discussed.  相似文献   

3.
In the tradition of modeling languages for optimization, a single model is passed to a solver for solution. In this paper, we extend BARON’s modeling language in order to facilitate the communication of problem-specific relaxation information from the modeler to the branch-and-bound solver. This effectively results into two models being passed from the modeling language to the solver. Three important application areas are identified and computational experiments are presented. In all cases, nonlinear constraints are provided only to the relaxation constructor in order to strengthen the lower bounding step of the algorithm without complicating the local search process. In the first application area, nonlinear constraints from the reformulation–linearization technique (RLT) are added to strengthen a problem formulation. This approach is illustrated for the pooling problem and computational results show that it results in a scheme that makes global optimization nearly as fast as local optimization for pooling problems from the literature. In the second application area, we communicate with the relaxation constructor the first-order optimality conditions for unconstrained global optimization problems. Computational experiments with polynomial programs demonstrate that this approach leads to a significant reduction of the size of the branch-and-bound search tree. In the third application, problem-specific nonlinear optimality conditions for the satisfiability problem are used to strengthen the lower bounding step and are found to significantly expedite the branch-and-bound algorithm when applied to a nonlinear formulation of this problem.  相似文献   

4.
The paper considers the hybrid flow-shop scheduling problem with multiprocessor tasks. Motivated by the computational complexity of the problem, we propose a memetic algorithm for this problem in the paper. We first describe the implementation details of a genetic algorithm, which is used in the memetic algorithm. We then propose a constraint programming based branch-and-bound algorithm to be employed as the local search engine of the memetic algorithm. Next, we present the new memetic algorithm. We lastly explain the computational experiments carried out to evaluate the performance of three algorithms (genetic algorithm, constraint programming based branch-and-bound algorithm, and memetic algorithm) in terms of both the quality of the solutions produced and the efficiency. These results demonstrate that the memetic algorithm produces better quality solutions and that it is very efficient.  相似文献   

5.
This paper describes a single-machine scheduling problem of maximizing total job value with a machine availability constraint. The value of each job decreases over time in a stepwise fashion. Several solution properties of the problem are developed. Based on the properties, a branch-and-bound algorithm and a heuristic algorithm are derived. These algorithms are evaluated in the computational study, and the results show that the heuristic algorithm provides effective solutions within short computation times.  相似文献   

6.
This paper deals with the uncapacitated multiple allocation hub location problem. The dual problem of a four-indexed formulation is considered and a heuristic method, based on a dual-ascent technique, is designed. This heuristic, which is reinforced with several specifical subroutines and does not require any external linear problem solver, is the core tool embedded in an exact branch-and-bound framework. Besides, the heuristic provides the branch-and-bound algorithm with good lower bounds for the nodes of the branching tree. The results of the computational experience (with the classical CAB and AP data sets) are included, showing the great effectiveness of this approach: instances with up to 120 nodes are solved.  相似文献   

7.
This paper considers a two-machine flow shop scheduling problem with deteriorating jobs in which the processing times of jobs are dependent on their starting times in the sequence. The objective is to minimize the weighted sum of makespan and total completion time. To analyse the problem, we propose a mixed integer programming model, and discuss several polynomially solvable special cases. We also present a branch-and-bound algorithm with several dominance rules, an upper bound and a lower bound. Finally, we present results of computational experiments conducted to evaluate the performance of the proposed model and the exact algorithm.  相似文献   

8.
This paper proposes to investigate learning and forgetting effects on the problem of scheduling families of jobs on a single machine to minimize total completion time of jobs. A setup time is incurred whenever the single machine transfers job processing from a family to another family. To analyze the impact of learning and forgetting on this group scheduling problem, we structure three basic models and make some comparisons through computational experiments. The three models, including no forgetting, total forgetting and partial forgetting, assume that the processing time of a job is dependent on its position in a schedule. Some scheduling rules and a lower bound are derived in order to constitute our branch-and-bound algorithm for searching an optimal sequence. In addition, an efficient and simply-structured heuristic is also built to find a near-optimal schedule.  相似文献   

9.
In this paper, we consider a permutation flowshop scheduling problem with deteriorating jobs. The objective is to minimize the total tardiness of all jobs. A branch-and-bound algorithm incorporating with a dominance property and a lower bound is developed. Furthermore, two metaheuristic algorithms, the simulated annealing algorithm, and the particle swarm optimization method, are proposed. Finally, computational studies are given.  相似文献   

10.
The scheduling of maintenance activities has been extensively studied, with most studies focusing on single-machine problems. In real-world applications, however, multiple machines or assembly lines process numerous jobs simultaneously. In this paper, we study a parallel-machine scheduling problem in which the objective is to minimize the total tardiness given that there is a maintenance activity on each machine. We develop a branch-and-bound algorithm to solve the problem with a small problem size. In addition, we propose a hybrid genetic algorithm to obtain the approximate solutions when the number of jobs is large. The performance of the proposed algorithms is evaluated based mainly on computational results.  相似文献   

11.
研究带有准备时间的单机学习效应模型,其中工件加工时间具有指数时间学习效应,即工件的实际加工时间是已经排好的工件加工时间的指数函数。学习效应模型考虑工件的实际加工时间同时依赖于工件本身的加工时间和已加工工件的累计加工时间,目标函数为最小化总完工时间。这个问题是NP-难的,提出了一个数学规划模型来求解该问题的最优解。通过分析几个优势性质和下界,提出分支定界算法来求解此问题,并设计启发式算法改进分支定界算法的上界值。通过仿真实验验证了分支定界算法在求解质量和时间方面的有效性。  相似文献   

12.
In this paper, we consider the single machine earliness/tardiness scheduling problem with no idle time. Two of the lower bounds previously developed for this problem are based on Lagrangean relaxation and the multiplier adjustment method, and require an initial sequence. We investigate the sensitivity of the lower bounds to the initial sequence, and experiment with different dispatch rules and some dominance conditions. The computational results show that it is possible to obtain improved lower bounds by using a better initial sequence. The lower bounds are also incorporated in a branch-and-bound algorithm, and the computational tests show that one of the new lower bounds has the best performance for larger instances.  相似文献   

13.
This paper addresses a bi-criteria two-machine flowshop scheduling problem when the learning effect is present. The objective is to find a sequence that minimizes a weighted sum of the total completion time and the maximum tardiness. In this article, a branch-and-bound method, incorporating several dominance properties and a lower bound, is presented to search for the exact solution for small job-size problems. In addition, two heuristic algorithms are proposed to overcome the inefficiency of the branch-and-bound algorithm for large job-size problems. Finally, computational results for this problem are provided to evaluate the performance of the proposed algorithms.  相似文献   

14.
In this paper, we address the three-machine flowshop scheduling problem. Setup times are considered separate from processing times, and the objective is to minimize total completion time. We show that the three-site distributed database scheduling problem can be modeled as a three-machine flowshop scheduling problem. A lower bound is developed and a dominance relation is established. Moreover, an upper bound is developed by using a three-phase hybrid heuristic algorithm. Furthermore, a branch-and-bound algorithm, incorporating the developed lower bound, dominance relation, and the upper bound is presented. Computational analysis on randomly generated problems is conducted to evaluate the lower and upper bounds, the dominance relation, and the branch-and-bound algorithm. The analysis shows the efficiency of the upper bound, and, hence, it can be used for larger size problems as a heuristic algorithm.  相似文献   

15.
The problem of scheduling in permutation flowshops is considered in this paper with the objectives of minimizing the sum of weighted flowtime/sum of weighted tardiness/sum of weighted flowtime and weighted tardiness/sum of weighted flowtime, weighted tardiness and weighted earliness of jobs, with each objective considered separately. Lower bounds on the given objective (corresponding to a node generated in the scheduling tree) are developed by solving an assignment problem. Branch-and-bound algorithms are developed to obtain the best permutation sequence in each case. Our algorithm incorporates a job-based lower bound (integrated with machine-based bounds) with respect to the weighted flowtime/weighted tardiness/weighted flowtime and weighted tardiness, and a machine-based lower bound with respect to the weighted earliness of jobs. The proposed algorithms are evaluated by solving many randomly generated problems of different problem sizes. The results of an extensive computational investigation for various problem sizes are presented. In addition, one of the proposed branch-and-bound algorithms is compared with a related existing branch-and-bound algorithm.  相似文献   

16.
This paper deals with a single-machine scheduling problem with limited machine availability. The limited availability of machine results from periodic maintenance activities. In our research, a periodic maintenance schedule consists of several maintenance periods. Each maintenance period is scheduled after a periodic time interval. The objective is to find a schedule that minimizes the total flow time subject to periodic maintenance and nonresumable jobs. Some important theorems are proved for the problem. A branch-and-bound algorithm that utilizes several theorems is proposed to find the optimal schedule. We also develop a heuristic to solve large sized problems. In this paper, computational results show that the proposed heuristic is highly accurate and efficient.  相似文献   

17.
This paper reports on a new solution approach for the well-known multi-mode resource-constrained project scheduling problem (MRCPSP). This problem type aims at the selection of a single activity mode from a set of available modes in order to construct a precedence and a (renewable and non-renewable) resource feasible project schedule with a minimal makespan. The problem type is known to be NP-hard and has been solved using various exact as well as (meta-)heuristic procedures.The new algorithm splits the problem type into a mode assignment and a single mode project scheduling step. The mode assignment step is solved by a satisfiability (SAT) problem solver and returns a feasible mode selection to the project scheduling step. The project scheduling step is solved using an efficient meta-heuristic procedure from literature to solve the resource-constrained project scheduling problem (RCPSP). However, unlike many traditional meta-heuristic methods in literature to solve the MRCPSP, the new approach executes these two steps in one run, relying on a single priority list. Straightforward adaptations to the pure SAT solver by using pseudo boolean non-renewable resource constraints has led to a high quality solution approach in a reasonable computational time. Computational results show that the procedure can report similar or sometimes even better solutions than found by other procedures in literature, although it often requires a higher CPU time.  相似文献   

18.
This paper considers the solution of Mixed Integer Nonlinear Programming (MINLP) problems. Classical methods for the solution of MINLP problems decompose the problem by separating the nonlinear part from the integer part. This approach is largely due to the existence of packaged software for solving Nonlinear Programming (NLP) and Mixed Integer Linear Programming problems.In contrast, an integrated approach to solving MINLP problems is considered here. This new algorithm is based on branch-and-bound, but does not require the NLP problem at each node to be solved to optimality. Instead, branching is allowed after each iteration of the NLP solver. In this way, the nonlinear part of the MINLP problem is solved whilst searching the tree. The nonlinear solver that is considered in this paper is a Sequential Quadratic Programming solver.A numerical comparison of the new method with nonlinear branch-and-bound is presented and a factor of up to 3 improvement over branch-and-bound is observed.  相似文献   

19.
We describe a time-oriented branch-and-bound algorithm for the resource-constrained project scheduling problem which explores the set of active schedules by enumerating possible activity start times. The algorithm uses constraint-propagation techniques that exploit the temporal and resource constraints of the problem in order to reduce the search space. Computational experiments with large, systematically generated benchmark test sets, ranging in size from thirty to one hundred and twenty activities per problem instance, show that the algorithm scales well and is competitive with other exact solution approaches. The computational results show that the most difficult problems occur when scarce resource supply and the structure of the resource demand cause a problem to be highly disjunctive.  相似文献   

20.
Deteriorating jobs scheduling problems have been extensively studied in recent years. However, it is assumed that there is a common goal to minimize for all jobs in most of the research. In many management situations, multiple agents compete on the usage of a common processing resource. In this paper, we considered a single-machine scheduling problem with a linear deterioration assumption where the objective is to minimize the total weighted completion time of jobs from the first agent with the restriction that no tardy job is allowed for the second agent. We proposed a branch-and-bound algorithm and three heuristic algorithms to search for the optimal solution and near-optimal solutions, respectively. A computational experiment was conducted to evaluate the performance of the proposed algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号