共查询到18条相似文献,搜索用时 109 毫秒
1.
ZHANGJian-bing WANGJin-wen FANGYan 《光散射学报》2005,17(1):50-52
用YAG脉冲激光器烧蚀去离子水中的Ag片,得到高分散均匀的Ag纳米胶体,通测试发现此Ag胶体系是一种非常高效的SERS活性增强基底,并对其与对羟基苯甲酸的吸附行为做了简要分析 相似文献
2.
用氢气还原氧化银的方法合成了粒径约为100nm的银纳米粒子,然后在表面经PVP修饰的载玻片上以自组装的方式构筑了银纳米粒子单层和双层二维有序阵列,在铝基底上通过对氨基苯甲酸成功构筑了银纳米粒子的有序组装体,用扫描电镜进行了表征;对不同基底二维有序阵列的表面增强拉曼光谱进行了研究,结果表明,对氨基苯甲酸在银和铝基基底上都是垂直吸附,其表面拉曼增强效应是电磁场增强占主导地位,但同时也有化学增强的贡献。 相似文献
3.
苯甲酸的羟基取代物在银纳米颗粒表面的吸附行为的研究 总被引:1,自引:1,他引:1
分别以覆银滤纸和银胶溶液中的银纳米颗粒为基底,对苯甲酸的三种羟基取代物(n-HBA,n=P,M,O)进行了表面增强拉曼散射(SERS),发现PHBA分子在覆银滤纸上的SERS光谱和银胶中的SERS光谱明显不同,而MHBA分子和OHBA分子在两种基底上的SERS光谱却很相近。分析表明这些变化都来源于分子在银纳米颗粒表面吸附行为的变化,基底的表面特性和分子的表面构型对分子在基底表面的吸附行为会产生很大的影响。 相似文献
4.
本文介绍浸泡法制备基于滤纸的SERS基底,并分析滤纸SERS基底表面银纳米粒子(AgNP)的分布与浸泡时间的关系。以精浆为检测对象,相比于514nm波长激发,785nm激发可获得更好的光谱数据,同时还比较了该波长激发下精浆的常规拉曼光谱与SERS光谱。更为重要的是,通过采用精浆中654cm-1谱峰强度评估不同浸泡时间下(6h,12h,24h)滤纸SERS基底的增强性能和测量结果的重复性。实验结果表明,12h浸泡获得的滤纸SERS基底表面具有均匀的AgNP分布,在785nm波长激发下,纸基SERS基底可提供增强效果及光谱重复性俱佳的精浆SERS光谱。 相似文献
5.
6.
本文同时测定了当温度从-190℃上升到30℃和从30℃下降到-190℃对氨基苯甲酸(p-Aminobenzoic Acid,PABA)和邻氨基苯甲酸(o-Amindbenzoin Acid,OABA)在粗糙的银表面上的表面增强拉曼光谱的变化。结果表明,若吸附质表面拉曼光谱的增强主要表现为化学机理,且整个分子平躺在表面,则分子在表面上的取向不会随温度的变化而改变。而温度的变化会引起基于电磁场增强机理 相似文献
7.
报道了用一种化学还原方法制备银溶胶的新方法。用紫外-可见光谱和透射电镜研究银纳米粒子的形成过程,粒子形状及粒径分布。结果表明,在反应初期形成球形和棒状两种形状的银纳米粒子,随着反应的进行,大部分的棒状粒子逐渐变为球形粒子,最终棒状粒子少于银纳米粒子总数的3%。因此,最终得到了一种形状均一的,平均粒径为17nm银纳米粒子。同时也用紫外-可见光谱研究了Cl-的加入对这种银纳米粒子光谱性质的影响,结果表明Cl-加速了银纳米粒子的聚集。这种银溶胶有着较高的SERS活性。 相似文献
8.
分别以覆银的干燥滤纸和银胶溶液中的银纳米颗粒为基底,对苯甲酸的一系列氨基取代物[n -ABA(n =P ,M和O) ]进行了表面增强拉曼散射(SERS)的研究,发现PABA在两种基底上的SERS光谱差别较大,而MABA和OABA则不然,我们分析了可能的原因 相似文献
9.
《光散射学报》2015,(3):231-238
表面增强拉曼光谱(SERSp)技术是一种新兴的分析检测技术,由于其对样品分析灵敏度高、检测时间短以及样品所需量小等优点,近年来该技术已在生物医学,化学等领域得到广泛的应用,同时表面增强拉曼散射(SERS)基底的制备已成为该领域的研究热点。本文主要对三种以银纳米粒子(AgNPs)的SERS效应为基质的拉曼活性基底:毛细管-AgNPs,二氧化钛-AgNPs和滤纸-AgNPs进行比较研究。首先分别用三种基底对罗丹明6G(R6G)分子进行拉曼光谱采集及分析,找出三种SERS基底相应的最佳制备条件。最后用这三种最佳条件下制备的SERS基底对同一个健康人血清进行拉曼光谱检测,并对结果进行分析比较。初步结果:三种SERS基底都是可靠的和实用的;二氧化钛-AgNPs基底灵敏度相对较高,但制备过程较复杂;滤纸-AgNPs基底灵敏度其次;毛细管-AgNPs基底及滤纸-AgNPs基底的制备均较为简单。因此,从实用角度考虑,滤纸-AgNPs基底比较适合血清的表面增强拉曼光谱检测与分析。 相似文献
10.
HUJia-wen ZHOUHai-hui ZHANGYong JIANGYang RENBin TIANZhong-qun 《光散射学报》2005,17(1):100-102
本文研究了尺寸可控的Au -Pd核壳纳米粒子和银纳米立方颗粒的表面增强拉曼散射(SERS)活性。发现Au-Pd核壳纳米粒子的增强能力要比粗糙的钯电极强;银纳米立方颗粒的增强能力和粗糙的银电极相当。更为重要的是,银纳米立方颗粒既具有原子级平整的小单晶面又处于纳米尺度,因而它们可以作为粗糙表面和结构确定的单晶表面之间的桥梁,对其SERS效应的研究可以加深人们对SERS机理的认识。 相似文献
11.
通过改进电极修饰方法,在粗糙银电极上沉积银纳米颗粒,得到了哌啶分子吸附在覆银银电极上的高质量SERS谱,并研究了电位对哌啶分子在这种覆银银电极上SERS光谱的影响。实验表明,沉积有银纳米颗粒的粗糙银电极是一种新的高效SERS活性基底,分析并解释了覆银银电极能产生极强的增强效应的可能原因。 相似文献
12.
初步提出一种研究双层类脂膜表面增强拉曼散射的新颖实验方法,即以导电玻璃为成膜基底,金胶为增强体系,将电化学方法与表面增强拉曼(SERS)光谱技术相结合,在获得良好循环伏安图,保证成膜状态良好的前提下,进行SERS信号收集。利用此方法,我们得到了反映成膜过程的SERS谱图,并对此进行了试探性的解释。 相似文献
13.
AMP和DNA的银溶胶增强拉曼光谱 总被引:6,自引:0,他引:6
本文报道了生物分子5‘-腺苷磷酸(AMP)和脱氧核糖核酸(DNA)在银溶胶中的增强拉曼光谱。实验结果表明用银溶胶增加方法可以得到在较低浓度下、几乎不受光干扰的增强拉曼光谱。与固体AMP和DNA拉曼光谱进行比较,发现谱峰有很好的一致性,但也存在差异,如对应于固体AMP中715cm^-1处的腺嘌呤的呼吸振动峰加强,并位移到723cm^-1处,813cm^-1处的磷酸酯的对称伸缩振动峰消失了;在DNA中核糖环的振动峰明显加强,A,T,C,G四种碱基的峰也得到了不同程度的增强。通过对实验结果的分析,推测了AMP和DNA在银溶胶界面的吸附状态和分子结构。 相似文献
14.
利用金纳米颗粒在十八胺分子的LB膜上自组装得到了一种新的表面增强拉曼光谱(SERS)活性基底。以C60分子作为这种新基底的探针分子,得到了高质量的C60SERS光谱。不但C60的振动模式增加了,而且很多模式发生了分裂,特别是一些禁戒的模式也出现在光谱中,这说明这种新基底是一种非常高效的活性基底。C60分子在新基底上的增强机制可能来自"热点"增强。 相似文献
15.
16.
表面增强拉曼光谱研究高分子共混物薄膜相结构 总被引:2,自引:0,他引:2
采用拉曼光谱法研究了由聚苯乙烯(PS)/聚甲基丙烯酸甲酯(PMMA)的四氢呋喃(THF)溶液在玻璃基板上旋转涂膜得到的共混物薄膜。应用显微共焦拉曼光谱,根据PS在1604,1585cm-1处苯环的伸缩振动峰和PMMA在1728cm-1处羰基的伸缩振动峰,可以确定薄膜(厚度约为800nm)表面海岛状相结构的组分分布信息。另外,还对210℃下PS/PMMA(30/70)共混物薄膜退火过程中表面的变化进行了分析。采用表面增强拉曼散射效应对高聚物的增强作用得到了薄膜(厚度约为400nm)的Raman光谱,并且成功地对其组成进行了分析。 相似文献
17.
在聚乙烯吡咯烷酮(PVP)存在下,用多元醇还原硝酸银,Cu(NO3)2作为保护剂,快速有效的合成大量银纳米线,并优化了反应条件,得到结构均一、分散性较好的银纳米线。以罗丹明B为探针分子检测了该银纳米基底的表面增强效应,结果表明该基底对罗丹明B的表面增强效果明显,其表面增强因子可达6.4×105。文中利用这种基底得到了右旋肉碱的表面增强拉曼光谱(SERS),与其固体常规拉曼光谱(NRS)和10-3 mol·L-1水溶液的拉曼光谱对比,并对各自的峰位进行了归属。右旋肉碱固体在3 100~2800和1 700~200 cm-1处有明显拉曼振动峰,在右旋肉碱的表面增强拉曼光谱中,1700~200 cm-1处的峰得到了明显的增强。经分析,右旋肉碱分子与银纳米基底呈180°。本文还用合成的纳米银基底得到了不同浓度右旋肉碱溶液的表面增强拉曼光谱,其最低检测浓度为10-6 mol·L-1。右旋肉碱是一种重要的心血管药物,本文为其研究提供了较全面的拉曼光谱信息,为右旋肉碱的快速、特征、痕量监测提供了有力依据,也为进一步研究右旋肉碱的药理学提供了重要参考。 相似文献
18.
膜结构对金纳米线阵列表面增强拉曼散射的影响 总被引:1,自引:0,他引:1
金纳米线阵列作为表面增强拉曼散射的基底能够产生有效的增强效应,金纳米线阵列通过金线之间的电场耦合产生增强的拉曼信号。在实验中,制备出金纳米线阵列与金纳米刷,两种样品结构不同,金纳米刷的一面带有金膜。用巯基吡啶作为探针分子,金纳米刷的SERS实验显示出很好的增强效应,增强因子为106,不同位点的SERS谱具有区域不均一的特征。而相同实验条件下的金纳米线阵列的增强因子只有102。光学吸收谱表明这两种结构均发生了共振吸收增强电场,对其结构的分析表明,这两种结构具有不同的电场局域化分布,同时金纳米刷中金线上端强烈的电场耦合,这是其具有更好的增强效用的原因。同时,4-MP的表面增强拉曼谱的变化特征体现了化学增强效应的影响。 相似文献