首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Multiple dendritic catalysts for asymmetric transfer hydrogenation   总被引:1,自引:0,他引:1  
The first and second generation multiple dendritic ligands based on chiral diamine were synthesized in a convergent approach and were well-characterized by NMR and MS techniques. Their ruthenium complexes prepared in situ had good solubility in the reaction medium (azeotrope of formic acid and triethylamine) and demonstrated high catalytic activity and enantioselectivity comparable to monomeric catalysts in the asymmetric transfer hydrogenation of ketones and imines. Quantitative yields and for some cases a slightly higher enantioselectivity (up to 98.7% ee) were obtained in the dendritic catalysis. Considering the high local catalyst concentrations at the periphery, diones were tested for the possible synergic reactivity between catalytic units at the surface, while no apparent differences were noted.  相似文献   

2.
9-Amino(9-deoxy)epiquinine and 9-amino(9-deoxy)epicinchonine were applied in asymmetric transfer hydrogenation of aromatic ketones in both iridium and rhodium catalytic systems using i-propanol as the hydrogen source. Good to excellent conversions and enantioselectivities were observed with a variety of aromatic ketones. Moreover, the Ir complex and Rh complex of 9-amino(9-deoxy)cinchonine were recovered in high yields with dilute hydrochloric acid. The enantioselectivity of 1-phenylethanol was nearly maintained after six cycles.  相似文献   

3.
The use of the tetrahydroisoquinoline scaffold is well documented in biologically active compounds. However, reports of the utilisation of tetrahydroisoquinoline compounds in asymmetric catalysis are limited. The synthesis of novel diamine ligands possessing the tetrahydroisoquinoline (tetrahydroisoquinoline) backbone and evaluation of their activity in the asymmetric transfer hydrogenation of acetophenone are presented. The diamine ligands in conjunction with i-PrOH as the hydrogen source and [RhCl2(Cp1)]2 as the metal precursor proved to be the most effective of the tetrahydroisoquinoline derivatives for this catalytic system. Water was found to have a profound influence on the enantioselectivity of the reaction. Optimisation of the amount water, i-PrOH and catalytic loading content rendered the best result of 70% enantioselectivity for the (S)-1-phenylethanol isomer product.  相似文献   

4.
《Tetrahedron: Asymmetry》2005,16(15):2525-2530
Tunable dendritic N-mono-sulfonyl ligands have been designed and synthesized via direct N-mono-sulfonylization of the chiral dendritic vicinal diamines and their ruthenium complexes demonstrated high catalytic and recyclable activities with comparable enantioselectivities to Noyori–Ikariya’s TsDPEN-Ru in the asymmetric transfer hydrogenation of an extended range of substrates, such as ketones, keto esters, and olefins.  相似文献   

5.
Antidepressant duloxetine (1) was prepared via asymmetric transfer hydrogenation of 3-(dimethylamino)-1-(thiophen-2- yl)propan-1-one (3). The Ru(Ⅱ), Rh(Ⅲ) and Ir(Ⅲ) complexes of several chiral ligands were examined as the catalyst and (S,S)-N-tosyl-1,2-diphenyl ethylenediamine (TsDPEN)-Ru(Ⅱ) complex was found to provide good yield and excellent enantioselectivity. 2007 Ming Yan. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.  相似文献   

6.
A new series of dendritic ligands with a chiral diphosphine located at the focal point have been synthesized through coupling of (R,R)-3,4-bis(biphenylphosphino)pyrrolidine (pyrphos) with peripherally alkyl-functionalized benzoic acid dendrons. These ligands were employed in the Rh-catalyzed asymmetric hydrogenation of prochiral dehydroamino acids, exhibiting excellent catalytic activities and enantioselectivities. The second-generation dendritic catalyst could be recovered by simple liquid–liquid biphasic separation and reused four times without serious loss of its activity and selectivity.  相似文献   

7.
A subtle change in the ligand structure, replacing the carbonyl oxygen with sulfur in simple alpha-amino acid amides, resulted in a dramatic activity and selectivity improvement in the rhodium- or ruthenium-catalyzed reduction of ketones under hydrogen transfer conditions. In addition, in most cases, a switch of the product's absolute configuration was observed on going from amides to the corresponding thioamides. Under optimized conditions, we obtained the secondary alcohol products in high yield and enantioselectivity (up to 97% ee) using only 0.25 mol % catalyst loading. [structure: see text]  相似文献   

8.
Novel chiral Schiff bases were synthesized from (+)‐camphor, and their application to asymmetric transfer hydrogenation of prochiral ketones is described. The asymmetric transfer hydrogenation reaction could afford excellent conversion rates (up to 97.3%) and up to 27.3% enantiomeric excess. © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:682–687, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20494  相似文献   

9.
This paper focuses on readily accessible thiourea hydrogen bond catalysts derived from amino acids, whose steric and electronic features are modulated by their degree of substitution at the carbinol carbon center. These catalysts were applied in the asymmetric transfer hydrogenation of nitroolefins furnishing the chiral products in up to 99% yield and 86% enantiomeric excess. The proposed catalyst's mode of action is supported by mechanistic investigations.  相似文献   

10.
Nine members of a new ligand class incorporating both an oxazoline ring and a pyrrolidine unit were prepared in an efficient four-step synthesis starting from readily available chiral amino alcohols and proline. A study of these ligands in the asymmetric transfer hydrogenation of acetophenone showed that the catalysts formed from [Ir(cod)Cl]2 were the most active while those derived from [Ru(p-cymene)Cl2]2 gave the highest enantioselectivities (up to 61% ee).  相似文献   

11.
A novel water-soluble cationic N-monosulfonated chiral diamine ligand diguanidinium 1c was easily prepared from (R,R)-DPEN and its rhodium complex and was successfully applied in the asymmetric transfer hydrogenation of prochiral ketones and imines in water by using sodium formate and formic acid as co-hydrogen donors. Various substrates were reduced with high yields and good to excellent enantioselectivities (up to >99% ee).  相似文献   

12.
Enantiopure tolvaptan, the first and only oral vasopressin antagonist for hyponatremia has been prepared by using an asymmetric transfer hydrogenation as a key step with HCOOH–Et3N or HCOONa–H2O as the hydrogen donor in open air. Good chemical yields with up to 99% enantioselectivity were obtained with a 1000:1 of S/C in an HCOONa–H2O system. The air and water stable catalysts provide a very promising prospect for industrial application.  相似文献   

13.
Molecularly imprinted Ru-complex catalysts acting in water were prepared on a SiO(2) surface by molecular imprinting of a SiO(2)-supported Ru-complex using organic polymers as surface matrix overlayers. (R)-1-(o-fluorophenyl)ethanol, which is one of the hydrogenated products of o-fluoroacetophenone, was imprinted on the supported Ru-complex as a template, and an active Ru-complex with a shape-selective reaction space (molecularly imprinted cavity) was prepared inside the wall of the hydrophobic organic polymer matrix overlayers. Structures of the SiO(2)-supported and molecularly imprinted Ru catalysts were characterized by means of solid-state NMR, XPS, XRF, ICP, UV/vis, XAFS, TGA, and SEM. The molecularly imprinted Ru catalysts exhibited fine shape selectivity and enantioselectivity for the asymmetric transfer hydrogenation of o-fluoroacetophenone and its derivatives.  相似文献   

14.
Synthesis of chiral diphosphine ligands containing a spiro scaffold was described. The ruthenium complexes of these spiro ligands were found to have extremely high activities (S/C up to 100 000) and enantioselectivities (ee up to 99.5%) in the asymmetric hydrogenation of aromatic, heteroaromatic, and alpha,beta-unsaturated ketones.  相似文献   

15.
16.
The comparative catalytic activities of a few chiral rhodium carboxylato complexes in combination with chiral and achiral phosphines are described. In the hydrogenation of α-acetamidocinnamic acid and its methyl ester, differences are observed in turnover numbers and enantioselectivities. Diastereomeric interactions between chiral carboxylato and chiral phosphine moieties resulting in different rates are clearly seen. Arrhenius plots of (+) and (-) DIOP [DIOP = 2,3 isopropylidene 2,3 dihydroxy-1,4bis (diphenylphosphino) butane] with rhodium (-) mandalato complex give markedly different activation energies.  相似文献   

17.
喹啉及其衍生物的多相不对称氢转移是制备杂环手性化合物的理想策略.多相手性催化体系具有催化剂可循环利用及产物分离提纯容易等优势.然而,喹啉及其衍生物的多相手性高效催化体系鲜有报道.这主要是由于多相手性氢转移为水-油-固三相反应,在反应的过程中,传质问题极大影响固体催化剂的催化性能.因此,发展具有相转移功能的手性催化材料,...  相似文献   

18.
19.
Liu PN  Gu PM  Wang F  Tu YQ 《Organic letters》2004,6(2):169-172
[reaction: see text] Chiral Ru-TsDPEN [N-(p-toluenesulfonyl)-1,2-diphenylethylenediamine]-derived catalysts were first successfully immobilized onto amorphous silica gel and mesoporous silicas of MCM-41 and SBA-15 by an easily accessible approach. The catalyst immobilized on silica gel demonstrated remarkably high catalytic activities and excellent enantioselectivities (up to >99% ee) for the heterogeneous asymmetric transfer hydrogenation of various ketones. Particularly, the catalyst could be readily recovered and reused in multiple consecutive catalytic runs (up to 10 uses) with the completely maintained enantioselectivity.  相似文献   

20.
Stereochemically well-defined ruthenium(II) catalysts have been applied to the asymmetric transfer hydrogenation of a series of ketones. In one case, statistical experimental design was employed to optimize the enantiomeric excess of the product. In the case of the TsDPEN-based systems, the replacement of trans-1,2-diphenyl substitution with cis-, or deletion of one of the phenyl groups, results in significant deterioration of the enantiomeric excess. A new method is described for the synthesis of tethered amino alcohol-containing catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号