首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The non-isothermal crystallization kinetics of isotactic polypropylene (iPP) and nucleated iPP was investigated by DSC. The crystalline morphology of iPP was observed by polarized light microscopy. It was found that the crystallization rate increased with the addition of nanometer-scale calcium carbonate (nm-CaCO3) particles. The addition of dibenzylidene sorbitol (DBS) could greatly reduce the spherulite size of iPP. The crystallization temperature for the iPP with DBS was higher than for non-nucleated iPP. DBS was an effective nucleating agent for iPP. The results of measurements suggested that there was a coordinated action to the crystallization of iPP when the organic nucleating agents (DBS) and nm-CaCO3 were added to iPP together. Comparison to the modified Avrami equation and Ozawa equation, another method—Mo’s method can describe the non-isothermal crystallization behavior of iPP and nucleated iPP more satisfactorily.  相似文献   

2.
The influences of α/β compound nucleating agents based on octamethylenedicarboxylic dibenzoylhydrazide on crystallization and melting behavior of isotactic polypropylene (iPP) were analyzed. It is found that the crystallization temperatures of nucleated iPP were increased by above 11.0°C and the relative contents of β‐crystals (Kβ ) in iPP reached above 0.40 after addition of compound nucleating agents. The Kβ values depend on cooling rate, crystallization temperature in isothermal crystallization, and the difference between the crystallization temperatures of iPP nucleated by two individual nucleating agents. The nonisothermal crystallization kinetics were studied by Caze method and Mo method, respectively. The effective activation energy was calculated by the Friedman's method. The results illustrate that the half crystallization time was shortened and the crystallization rate was increased obviously after addition of nucleating agents, and the effective activation energy was increased with the relative crystallinity.  相似文献   

3.
Crystallization and melting behaviors of isotactic polypropylene (iPP) nucleated with compound nucleating agents of sodium 2,2′‐methylene‐bis (4,6‐di‐tert‐butylphenyl) phosphate (hereinafter called as NA40)/dicyclohexylterephthalamide (hereinafter called as NABW) (weight ratio of NA40 to NABW is 1:1) were studied by differential scanning calorimetry and wide‐angle X‐ray diffraction (WAXD), the relative β‐amount of iPP nucleated with these compound nucleating agents was also calculated in Turner‐Jones equation by using wide‐angle X‐ray diffraction data. Under isothermal crystallization, there exists a temperature range favorable for formation of β‐iPP. When the concentration of compound nucleating agents is 0.2 wt %, the temperature range is from 100 to 140 °C. While in nonisothermal crystallization, lower cooling rate is favorable for form of β‐iPP and the relative β‐amount of iPP increases with the decreasing of cooling rate in crystallization process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 911–916, 2008  相似文献   

4.
The crystallization kinetics of polypropylene (PP) with or without sodium benzoate as a nucleating agent were investigated by means of DSC and polarized optical microscopy in isothermal and nonisothermal modes. A modified Avrami equation was applied to the kinetic analysis of isothermal crystallization. The addition of the nucleating agent up to its saturation concentration increased the crystallization temperature by 15 °C and shortened both the isothermal and nonisothermal crystallization half‐times. It was concluded that the sodium benzoate acted as a good nucleating agent for α‐form PP. By adding the nuclefier to PP, adequately controlled spherulites increased the mechanical properties including especially the Izod impact strength and shortened cycle time of PP. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 1001–1016, 2001  相似文献   

5.
Addition of an α‐nucleating agent is the simple and effective method to increase nucleation efficiency of isotactic polypropylene (iPP). However, severe agglomeration and poor dispersibility of sodium 2,2′‐methylene‐bis(4,6‐di‐tertbutylphenyl) phosphate (NA11) decrease the nucleation efficiency in the iPP, and much more nucleating agent is needed to maintain the nucleating property. As a result, it becomes the key how to decrease the size of NA11 and increase the nucleating property. In this paper, zeolite 4A (Z4A) was firstly supported by NA11 through solution impregnation, and NA11 was dispersed by Z4A depending on the dispersion of zeolite as carrier for the second component. Then, the dispersed NA11 system (NA11‐Z4A) exhibited a superior nucleation behavior during the crystallization of the iPP matrix when it was used with iPP together. The isothermal and nonisothermal crystallization kinetics indicated that the NA11‐Z4A/iPP system had the best crystallization effect. Polarized optical microscopy (POM) and scanning electron microscopy (SEM) analyses showed that the size of NA11 decreased obviously when it was adsorbed on the surface of Z4A, which leads a better dispersibility of the nucleating agent and thus an accelerated nucleation process in the iPP matrix. In the end, the mechanism for the excellent dispersibility of NA11‐Z4A, which was based on hydrogen bonding between NA11 and Z4A, was confirmed by Fourier‐transform infrared spectroscopy (FTIR). Based on the research work, the solution impregnation strategy can potentially be applied to other systems to inhibit the agglomeration and improve the dispersibility of additives in iPP.  相似文献   

6.
In this work, the nonisothermal crystallization and subsequent melting behaviors of polypropylene (PP) nucleated with different nucleating agents (NAs) have been studied. α‐phase NA 1,3:2,4‐bis (3,4‐dimethylbenzylidene) sorbitol (DMDBS, Millad 3988), β‐phase NA aryl amides compound (TMB‐5), and their compounds were introduced into PP matrix, respectively. The results show that the nonisothermal crystallization behaviors and crystalline structures of PP with compounded NAs are dependent on the composition of NAs. In the sample of PP with 0.1 wt % DMDBS and 0.1 wt % TMB‐5, the nucleation efficiency (NE) of TMB‐5 is much higher than that of DMDBS and PP crystallizes mainly nucleated by TMB‐5, and in this condition, β‐phase PP is the main crystallization structure. For the sample of PP with 0.2 wt % DMDBS and 0.2 wt % TMB‐5, 0.2 wt % DMDBS has higher NE than 0.2 wt % TMB5, and α‐phase is the main crystalline structure. The cooling rate is proved to be very important in controlling the nonisothermal crystallization behavior and the final crystalline structure of nucleated PP. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1853–1867, 2008  相似文献   

7.
Compositions of neat polyproylene (PP), PP–PE (polyethylene) blend and PP–PE–DBS (dibenzylidene sorbitol) were studied with respect to their crystallization kinetics by means of differential scanning calorimetry in isothermal mode. A modified Avrami equation was applied to obtain the crystallization parameters of PP, PP–PE and PP–PE–DBS. Optical and hot-stage microscopy and dynamical analysis were used for structure determination. Experimental results have indicated that PE addition inhibits PP crystallization rate and acts as a plasticizer, while addition of DBS changes the crystallization kinetics. A detailed study of the DBS nucleation effects indicates that owing to the high surface energy, nuclei are formed during primary crystallization, leading to a fine PP crystalline structure and improved mechanical properties.  相似文献   

8.
Nucleation characteristics of isotactic polypropylene (iPP) nucleated by the α/β compounded nucleating agents (NAs) were investigated by wide‐angle X‐ray scattering, differential scanning calorimetry and mechanical testing. The results showed that the nucleation effect of the α/β compounded NAs depends on not only nucleation efficiency (NE) of individual β and α NAs and their ratios but also the processing conditions, especially the cooling rates. The nucleating characteristics of the α/β compounded NAs can be illustrated by competitive nucleation. The NA with high NE played a leading role during iPP crystallization even at a low weight ratio and at different cooling rates. The stiffness and toughness of iPP can be simultaneously improved by using suitable compositions at the appropriate ratios. Finally, the nonisothermal crystallization kinetics of iPP nucleated with the α/β compounded NAs was described by Caze method and the crystallization activation energy of nucleated iPP was calculated by Kissinger equation. The result indicated that the crystal growth pattern of nucleated iPP was heterogeneous nucleation followed by three‐dimension spherical growth. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 653–665, 2010  相似文献   

9.
The crystals of N, N′-dicyclohexyl-2,6-naphthalenedicarboxamide (DC26NDCA) and N,N′-dicyclohexyl-1,4-naphthalenedicarboxamide (DC14NDCA) were selected as nucleating agents to induce the crystallization of isotactic polypropylene (i-PP). The influence of the crystal structures of the nucleating agents on the crystallization behaviors and morphologies was studied by means of differential scanning calorimeter, wide-angle X-ray diffraction, polarized light microscopy, and atomic force microscopy (AFM). The results show that DC26NDCA is a selective β-nucleating agent for the i-PP crystallization, while DC14NDCA only has a very weak α-nucleating effect for the i-PP crystallization. The dynamic growth processes reveal that i-PP crystals grow with different crystallization behaviors in the presence of the nucleating agents. The i-PP lamellar structures on the crystal surfaces of the nucleating agents were observed by AFM in details, which suggested that the nucleating agents induced the epitaxial growth of the i-PP lamellae.  相似文献   

10.
In this study, the effects of crystallization conditions (cooling rate and end temperature of cooling) on crystallization behavior and polymorphic composition of isotactic polypropylene/multi‐walled carbon nanotubes (iPP/MWCNTs) composites nucleated with different concentrations of β‐nucleating agent (tradename TMB‐5) were investigated by differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD) and scanning electronic microscopy (SEM). The results of DSC, WAXD and SEM revealed that the addition of MWCNTs and TMB‐5 evidently elevates crystallization temperatures and significantly decreases the crystal sizes of iPP. Because of the competition between α‐nucleation (provided by MWCNTs) and β‐nucleation (induced by TMB‐5), the β‐phase crystallization takes place only when 0.15 wt% and higher concentration of TMB‐5 is added. Non‐isothermal crystallization kinetics study showed that the crystallization activation energy ΔE of β‐nucleated iPP/MWCNTs composites is obviously higher than that of pure iPP, which slightly increases with the increase of TMB‐5 concentration, accompanying with the transition of its polymorphic crystallization behavior. The results of non‐isothermal crystallization and melting behavior suggested that the cooling rate and end temperature of cooling (Tend) are important factors in determining the proportion and thermal stability of β‐phase: Lower cooling rate favors the formation of less amount of β‐phase with higher thermal stability, while higher cooling rate encourages the formation of higher proportion of β‐phase with lower thermal stability. The Tend = 100°C can eliminate the β–α recrystallization during the subsequent heating and therefore enhance the thermal stability of the β‐phase. By properly selecting TMB‐5 concentration, cooling rate and Tend, high β‐phase proportion of 88.9% of the sample was obtained. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The non-isothermal crystallization kinetics of three functionalized polypropylenes (PPs; polypropylenes-g-acrylic acid [PP-g-AA], polypropylenes-g-glycidyl methacrylate [PP-g-GMA], polypropylenes-g-maleic anhydride [PP-g-MAH]) at different cooling rates were investigated by differential scanning calorimetry, using the Jeziorny method, Ozawa method, and Mo method. The result showed that Mo method can adequately describe the non-isothermal crystallization kinetics of pure PP and functionalized PPs, and at a given relative crystallinity, the crystallization rate obtained using Mo method followed an order of PP-g-AA > PP-g-GMA > PP > PP-g-MAH. The crystallization activation energy for these samples was calculated using Kissinger's method, which indicated that the introduction of monomers had a confinement effect on the motion of PP chains.  相似文献   

12.
The effect of four nucleating agents on the crystallization of isotactic polypropylene (iPP) was studied by differential scanning calorimetry (DSC) under isothermal and non-isothermal conditions. The nucleating agents are: carbon nanofibers (CNF), carbon nanotubes (CNT), lithium benzoate and dimethyl-benzylidene sorbitol. Avrami?s model is used to analyze the isothermal crystallization kinetics of iPP. Based on the increase in crystallization temperature (T c) and the decrease in half-life time (τ½) for crystallization, the most efficient nucleating agents are the CNF and CNT, at concentrations as low as 0.001 mass%. Sorbitol and lithium benzoate show to be less efficient, while the sorbitol needs to be present at concentrations above 0.05 mass% to even act as nucleating agent.  相似文献   

13.
The effect of a sorbitol nucleating agent on crystallization of polypropylene (PP) in droplets was studied. Layer‐multiplying coextrusion was used to fabricate assemblies of 257 layers, in which PP nanolayers alternated with thicker polystyrene (PS) layers. The concentration of a commercial nucleating agent, Millad 3988 (MD) in the layers was varied up to 2 wt %. When the assembly was heated into the melt, interfacial driven breakup of the 12 nm PP layers produced a dispersion of submicron PP particles in a PS matrix. Analysis of optical microscope images and atomic force microscope images indicated that the particle size was not affected by the presence of MD. The crystallization behavior of the particle dispersion was characterized by thermal analysis. In the absence of a nucleating agent, the submicron particles crystallized almost exclusively by homogeneous nucleation at about 40 °C. Addition of a nucleating agent to the PP layers offered a unique opportunity to study the nature of heterogeneous nucleation. Nucleation by MD resulted in fractionated crystallization of the submicron PP particles. The concentration dependence of the multiple crystallization exotherms was interpreted in terms of the binary polypropylene‐sorbitol phase diagram. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1788–1797, 2007  相似文献   

14.
Sodium benzoate (SB), a conventional nucleating agent of α‐phase isotactic polypropylene (iPP) was discovered to induce the creation of β‐phase iPP under certain crystalline conditions. Polarized optical microscopy (POM) and wide angle X‐ray diffraction (WAXD) were carried out to verify the versatile nucleating activity of SB and investigate the influences of SB's content, isothermal crystallization temperature, and crystallization time on the formation of β‐phase iPP. The current experimental results indicated that, under isothermal crystallization conditions, SB showed peculiar nucleating characteristics on inducing iPP crystallization which were different from those of the commercial β form nucleating agent (TMB‐5). The content of β crystal form of iPP nucleated with SB (PP/SB) increased initially with the increase of crystallization temperature, nucleating agent (SB) percentage or crystallization time, reached a maximum value, and then decreased as the crystallization temperature, nucleating agent percentage or crystallization time further increased. While the content of β crystal form of iPP nucleated with TMB‐5 (PP/TMB‐5) showed a completely different changing pattern with the crystallization conditions. The obvious difference of the two kinds of nucleating agents on inducing iPP crystallization can be explained by the versatile nucleating ability of SB. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1183–1192, 2008  相似文献   

15.
Sodium 2,2′‐methylene‐bis(4,6‐di‐tert‐butylphenyl) phosphate (NA40) and N,N‐dicyclohexylterephthalamide (NABW) are high effective nucleating agents for inducing the formation of α‐isotactic polypropylene (α‐iPP) and β‐iPP, respectively. The isothermal crystallization kinetics of iPP nucleated with nucleating agents NABW, NA40/NABW (weight ratio of NA40 to NABW is 1:1) and NA40 were investigated by differential scanning calorimetry (DSC) and Avrami equation was adopted to analyze the experimental data. The results show that the addition of NABW, NA40/NABW and NA40 can shorten crystallization half‐time (t1/2) and increase crystallization rate of iPP greatly. In these three nucleating agents, the α nucleating agent NA40 can shorten t1/2 of iPP by the largest extent, which indicates that it has the best nucleation effect. While iPP nucleated with NA40/NABW compounding nucleating agents has shorter t1/2 than iPP nucleated with NABW. The Avrami exponents of iPP and nucleated iPP are close to 3.0, which indicates that the addition of nucleating agents doesn't change the crystallization growth patterns of iPP under isothermal conditions and the crystal growth is heterogeneous three‐dimensional spherulitic growth. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 590–596, 2007  相似文献   

16.
The effect of compounding procedure on morphology and crystallization behavior of isotactic polypropylene/high‐density polyethylene/carbon black (iPP/HDPE/CB) composite was investigated. iPP/HDPE/CB composites were prepared by four compounding procedures (A: iPP + HDPE + CB; B: iPP/HDPE + CB; C: HDPE/CB + iPP; D: iPP/CB + HDPE). Scanning electron microscopy observation showed that CB particles are mainly distributed in HDPE in all composites, and the phase morphology of composites was obviously affected by a compounding procedure. The size of the HDPE/CB domains in the composites prepared by procedures A and D decreased with the increase in CB content, whereas that of HDPE/CB in the composites prepared by procedures B and C rarely changed with the increase in CB content. The crystallization behaviors of the composites were significantly affected by their phase morphology, which resulted from the variation of compounding procedure. The isothermal crystallization rate of iPP in the composites prepared by procedures A and D was obviously increased, which may originate from the small HDPE/CB droplets dispersed in the iPP phase. The non‐isothermal crystallization curves of composites prepared by procedure D represented two peaks because the iPP component in these composites had the fastest crystallization rate, whereas the curves of composites prepared by other compounding sequences only exhibited one peak. Moreover, the crystallinity of HDPE almost increased by one time with the incorporation of only 1 phr CB because the CB particles selectively located in the HDPE phase, and the crystallinity of HDPE decreased with the further increase of CB content because of the strong restriction of CB on the HDPE chains. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Nucleating agents with an ≈6.5 Å lattice parameter induced the α phase of isotactic polypropylene (iPP, α‐iPP). A 6.5 Å periodicity is also involved in the nucleating agents for the β phase of iPP (β‐iPP). The similarity in substrate periodicities suggests that some nucleating agents may induce either the α or β phase under different crystallization conditions. 4‐Fluorobenzoic acid, dicyclohexylterephthalamide, and γ‐quinacridone (the latter two are known as β‐iPP nucleators) were tested over a wide range of crystallization temperatures [up to crystallization temperature (Tc) > 145 °C]. The two former nucleating agents induce exclusively α‐iPP and β‐iPP, respectively. γ‐Quinacridone on the contrary is a versatile agent with respect to the crystal phase generated. More specifically, the same crystal face of γ‐quinacridone induces either β‐iPP or α‐iPP when Tc is below or above ≈140 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2504–2515, 2002  相似文献   

18.
The crystallization behaviors of isotactic polypropylene (iPP) and its blends with thermoelastomers have been investigated with in situ X‐ray scattering and optic microscopy. At quiescent condition, the crystallization kinetics of iPP is not affected by the presence of elastomers; while determined by the viscosity, the differences are observed on sheared samples. With a fixed shear strain, the crystallization rate increases with increasing the shear rate. The fraction of oriented lamellar crystals in blends is higher than that in pure iPP sample, while the percentage of β phase is reduced by the presence of the elastomers. On the basis of experimental results, no direct correlation among the fraction of oriented lamellae, the percentage of β phase, and growth rate can be deduced. The evolution of the fraction of oriented lamellae supports that shear field promotes nucleation rather than growth process. Shear flow induces the formation of nuclei not only with preferring orientation but also with random orientation. The total density of nuclei, which determines the crystallization kinetics, does not control the ratio between nuclei with and without preferring orientation, which determines the fraction of oriented lamellae. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1188–1198, 2006  相似文献   

19.
The melting behavior of spherulites in thin sections of isotactic polypropylene bulk samples and high-density polyethylene thin films crystallized isothermally at various temperatures has been studied by polarized light microscopy. The regions around cavities and multiple boundary points between spherulites have higher melting temperatures than the other parts of spherulites crystallized in Regime III. The increase in melting temperature is explained as a result of crystallization under negative pressure arising locally in pockets of occluded melt due to density change during spherulitic crystallization. The negative pressure lowers locally the equilibrium melting temperature and therefore decreases the undercooling, which results in an increase in lamellar thickness. Sectioning of bulk samples releases frozen negative pressure and reveals the increase in melting temperature of those parts of spherulites that were crystallized at lower undercooling. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
In this article, the effect of ultrasonic oscillation on the dispersed morphology of attapulgite in polypropylene (PP) and crystallizing kinetics of PP/attapulgite composites prepared through extrusion in the presence and the absence of ultrasonic oscillation were studied. X‐ray diffraction analysis results showed that ultrasonic oscillation did not change attapulgite crystal structure during extrusion in PP/attapulgite composites. On the other hand, scanning electron microscopy and transmission electron microscope photographs indicated that ultrasonic oscillation promoted the dispersion of attapulgite particles in PP matrix. The dispersed morphology of attapulgite and ultrasound oscillation affected the crystalline form, nucleation rate, crystallization temperature, crystallinity, and spherulite size of PP crystals. PP transcrystals were formed on the attapulgite particle surface. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2300–2308, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号