首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the blends of chlorinated butyl rubber (CIIR), nitrile butadiene rubber (NBR) and chloroprene rubber (CR), a kind of high damping elastomer with broad temperature and frequency ranges is prepared. CIIR/NBR binary blend is prepared to take advantage of the immiscibility and the large difference in cross‐link density of the different phases caused by the curatives and accelerators migration. The dynamic mechanical analysis reveals that the binary blend was immiscible and its loss factor (tanδ) versus temperature curves show two separated and expanded loss peaks when compared with those of pure cured CIIR and NBR. In order to improve its damping properties at room temperature, the third component CR with the polarity between CIIR and NBR was blended into the binary blend. The resulted CIIR/NBR/CR ternary blend has gained effective damping properties (tanδ > 0.3) in the temperature range of ?86.4 to 74.6°C and the frequency range of 10?2 to more than 109 Hz. Other effects on the damping properties of the ternary rubber were also studied. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
<正> 含10%摩尔以下的离子且主链为柔性的离聚体是一种热塑性弹性体。在动态力学性质方面呈现特殊的行为,表现在贮能模量(1gE′)与温度的关系中有橡胶态平台出现。最早Otocka等指出,(丁二烯-甲基丙烯酸)共聚物无橡胶态平台,经金属离子中和后产生橡胶态平台,且E′增加。Agarwal,Makowski等则报道磺化乙丙胶离聚体的橡胶态平台随离子含量提高而加宽,随硬脂酸锌的加入而缩短。Fitzgerald及Weisst结合X-射线小角散射研究了甘油及邻苯二甲酸二辛酯对磺化聚苯乙烯离聚体的动态力学性质的影响。  相似文献   

3.
As in the case of reinforcing filler-induced increase in hysteresis in rubbers, placement of aluminum (A1) foil to the surface of a rubber blend of epichlorohydrin rubber and carboxylated nitrile base induces increased hysteresis of the rubber due to adhesion between Al and the rubber blend. Changes in hysteresis loss due to Al foil can be correlated with the peel strength of Al-rubber-Al joints. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
硅橡胶和氟橡胶作为国防、航天等重要领域的耐热材料一直被人们青睐,但其有着各自地优缺点且价格昂贵,本文尝试将这两种橡胶制成并用胶以解决氟橡胶不耐低温和加工性差的问题,以期增大其使用温度范围。采用机械共混法制备硅橡胶/氟橡胶并用胶,研究了硅橡胶和氟橡胶的混炼工艺、并用比、共硫化体系和硫化条件对并用胶力学性能的影响。结果表明,当硅橡胶/氟橡胶的质量比为10∶90,共硫化体系为3~#硫化剂/过氧化二异丙苯(DCP),一段硫化温度为170℃、硫化压力为10MPa、硫化时间为30min,二段硫化温度为200℃、硫化时间为6h时,并用胶的力学性能达到最好。  相似文献   

5.
After determining the size dependent miscibility of binary polymer blend films using molecular dynamics simulation and thermodynamics, the size dependent glass transition temperatures Tg(w,D) of several polymer blend films in miscible ranges are determined by computer simulation and the Fox equation where w is the weight fraction of the second component and D denotes thickness of films. The Tg(w,D) function of a thin film can decrease or increase as D decreases depending on their surface or interface states. The computer simulation results are consistent with available experimental results and theoretical results for polymer blend films of PPO/PS [poly(2,6-dimethyl-1,4-phenylene oxide)/polystyrene] and stereoregular PMMA/PEO [poly(methyl methacrylate)/poly(ethylene oxide)]. The physical background of the above results is related to the root of mean square displacement of thin films in their different regions.  相似文献   

6.
Thermoplastic elastomer (TPE) comprising air‐dried sheet or natural rubber (ADS or NR) and high‐density polyethylene (HDPE) was prepared by a simple blending technique. NR and HDPE were mixed with each type of phenolic compatibilizer (HRJ‐10518 or SP‐1045) or liquid natural rubber (LNR) at 180°C in an internal mixer. The mixing torque, shear stress, and shear viscosity of the blends increased with increasing amounts of NR. Positive deviation blend (PDB) for the blends containing active hydroxyl methyl phenolic resin in HRJ‐10518 or dimethyl phenolic resin in SP‐1045 was obtained. PDB was not observed for the blends without the compatibilizers or with LNR. The blends with HRJ‐10518 or SP‐1045 were compatible or partially compatible while the LNR blends were incompatible. In the phenolic compatibilized blends, NR dispersed in the HDPE matrix was found in the NR/HDPE blends of 20/80, 40/60, and 50/50 ratios. HDPE dispersed in NR matrix was obtained in the NR/HDPE blend of 80/20 ratio, and the co‐continuous phase was accomplished in the NR/HDPE blend of 60/40 ratio. The NR/HDPE blend at 60/40 ratio compatibilized with HRJ‐10518 and fabricated by a simple plastic injection molding machine exhibited higher ultimate tensile strength and elongation at break (EB). Incorporation of parafinic oil caused a decreasing tendency in tensile strength with increases in EB. The TPNRs exhibited high elastomeric nature with low‐tension set. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
本文用FTIR-ATR方法考察了线性低密度聚乙烯与天然橡胶(NR)及丁苯橡胶(SBR)两个共混体系,发现NR的835cm~(-1)和SBR的964cm~(-1)两个吸收峰因与聚乙烯共混而增高变窄,说明聚乙烯的非晶链段和橡胶分子之间存在一定程度的相互作用。  相似文献   

8.
The present study investigated the effects of two types of natural rubber and different blend ratios on the cure, tensile properties and morphology of natural rubber/recycled chloroprene rubber blends. The blends of natural rubber/recycled chloroprene rubber were prepared by using laboratory two-roll mill. The result showed that the cure time prolonged with the addition of recycled chloroprene rubber (rCR). Comparability, natural rubber/recycled chloroprene rubber (SMR L/rCR) blendcured rapidly than epoxidized natural rubber/recycled chloroprene rubber (ENR 50/rCR) blend. The addition of rCRalso caused a decrement in the tensile strength and elongation at break for both rubber blends. The SMR L/rCR blendsshowed higher tensile strength and elongation at break compared to those of ENR 50/rCR blends at any blend ratios.  相似文献   

9.
刘岚 《高分子科学》2009,(3):381-386
Self-vulcanizing blends of phenol hydroxy silicone rubber(PHSR)and fluoroelastomer(FPM)were prepared. Vulcanized rubbers with lower glass transition temperature(T_g)were successfully obtained.The results of dynamic mechanical analysis(DMA)show that the vulcanized FPM/PHSR(10 phr)blend has only one T_g temperature,demonstrating the well compatibility between FPM and PHSR.The thermogravimetric analysis(TGA)demonstrates that the PHSR do little damage to the thermal stability of FPM.The vulcanization charact...  相似文献   

10.
Nanotechnology has been explored recently as a means of enhancing the properties of conventional elastomers for engineering applications. In the current study, the effect of nanofillers on air impermeability properties of Brominated isobutylene‐isoprene rubber (BIIR)/Epoxidized natural rubber (ENR) blend has analyzed for automotive applications. The ENR chosen is ENR 25 and ENR 50 (25 and 50% epoxidation) and prepared the blends in a ratio of 75:25 (BIIR:ENR), and from both blend based composites, a part of carbon black replaced with graphene nanoplatelets (GNP). The physical and thermal properties were compared for both binary blend nanocomposites to study the level of exfoliation and reinforcement behavior of GNP. Morphology studies were employed to reveal the level of interaction between GNP and carbon black in both blends. The influence of epoxidation in the formation of nanostructures in both blends have been evaluated, and the effect of nanostructures on air permeability properties was studied. The air impermeability of BIIR‐ENR 50 nanocomposites were improved with increasing platelet concentration, a 30% improvement in air permeability is obtained for BIIR‐ENR 50 composites over BIIR ‐ENR 25.  相似文献   

11.
The objective of this paper is to show an easy and rapid way to determine qualitatively and quantitatively the type of polymer or polymer blend used in a rubber formulation. The most common polymers used manufacturing rubber products were tested and characterized by both their decomposition temperature and the curve profile. Thermogravimetric analysis, which is considered to be used mainly for quantitative purposes, turned out to be a rather useful analytical tool to obtain qualitative information of such elastomeric mixtures. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Bis(diisopropyl)thiophosphoryl disulfide (DIPDIS) has been used as a coupling cum curing agent for the compatibilization of blends of ethylene propylene diene monomer rubber (EPDM) with chloroprene rubber (CR). Electrical and mechanical properties of the blend vulcanizates have been studied to find the efficiency of the vulcanizing cum coupling activity of DIPDIS. The study reveals that CR in the presence of DIPDIS greatly improves the physical properties of EPDM. It is noted that the physical properties of the vulcanizates obtained from CR‐EPDM blend depend upon CR:EPDM ratio. The scanning electron microscopy (SEM) study reveals that it is possible to form a coherent blend of CR and EPDM in the presence of DIPDIS. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.

Blends of nitrile butadiene rubber (NBR) with butadiene rubber (BR) with varying ratios have been prepared. Vulcanization of prepared blends has been induced by ionizing radiation of gamma rays with varying dose up to 250 kGy. Physical properties, namely soluble fraction and swelling number have been followed up using toluene as a solvent. Mechanical properties, namely tensile strength, tensile modulus at 100% elongation and elongation at break have been followed up as a function of irradiation dose, as well as blend composition. Thermal stability of blends was studied by TGA. The result indicated that the addition of NBR has improved the properties of NBR/BR blends. Also, NBR/BR blend is thermally stable than BR alone.  相似文献   

14.
Analytical method for determination of the bound rubber composition of a filled SBR/BR blend compound was developed using measurement of the bound rubber content and microstructural analysis of the unbound rubber composition. Various filled SBR/BR blend compounds with different blend ratios were prepared using SBRs with different microstructures. This method included measurement of the bound rubber content, extraction of the unbound rubber, microstructural analysis of the unbound rubber composition, and process for determination of the bound rubber composition. Composition of the unbound rubber was analyzed using liquid proton nuclear magnetic resonance spectroscopy (H-NMR) and transmission Fourier transform infrared spectroscopy (FTIR). It was found that the analytical results using H-NMR had less experimental errors than those using transmission-FTIR. The raw SBR/BR blends were also analyzed in order to evaluate level of the experimental errors. Average SBR/BR ratios of the unbound rubbers were obtained using the 1,2- and 1,4-unit contents determined by the H-NMR analysis. The bound rubber compositions were obtained using the bound rubber contents and the average unbound rubber compositions. It was found that most of the bound rubbers had higher SBR ratios than the formulation value.  相似文献   

15.
以天然橡胶作为原材料,进行不同程度的机械塑炼,通过改变其平均分子量,对其构性关系进行研究。机械塑炼后的天然橡胶,平均分子量下降,塑性增加,在有机溶剂环己烷里的溶解度显著提高,最高溶解度接近29%。在相同固含量时,随着橡胶平均分子量的下降,溶液粘度增加。天然橡胶溶液的良好的粘合性能可以使胶板和胶片间形成有效的粘连,且其弹性会增加,从而制备一种具有弹性、无毒、环保的有机乒乓球拍面粘合胶水,粘接性能优于传统无机胶水。  相似文献   

16.
Green biodegradable thermoplastic natural rubber (GB‐TPNR) based on simple blend of natural rubber (NR) and poly(butylene succinate) (PBS) was prepared using three NR alternatives: unmodified NR and epoxidized NR with 25‐ or 50‐mol% epoxide (ie, ENR‐25 or ENR‐50). It was found that ENR‐50/PBS blend showed the best compatibility, which resulted in superior mechanical and thermal properties with the highest crystallinity of the PBS phase, on comparing with the ENR‐25/PBS and NR/PBS blends. This might be attributed to stronger chemical interactions between the epoxide groups in ENR‐50 and the polar functional groups in PBS, which were confirmed by Fourier transform infrared (FTIR). Furthermore, scanning electron microscopy (SEM), atomic force microscopy (AFM), and polarizing optical microscopy (POM) micrographs of ENR‐50/PBS blend revealed phase separation with finer‐grained cocontinuous structure than in ENR‐25/PBS and NR/PBS simple blends. Furthermore, the chemical interactions in ENR‐50/PBS blend enhanced the resistance to accelerated weathering.  相似文献   

17.
Nitrile–butadiene rubber (NBR) has been blended with polychloroprene (CR) in a weight ratio of 1:1. The vulcanizing systems in the blend formulations were varied to obtain non crosslinked CR embedded in vulcanized NBR and non crosslinked NBR embedded in vulcanized CR. The effects of these two different phases on the rheological and mechanical characteristics were evaluated. In addition, the dynamic compliance of the blends was measured over wide ranges of frequency and temperature. It has been found that the mechanical and rheological properties of the vulcanized blends depend on the type of vulcanizing system, its concentration and the presence of reinforcing filler. The mechanical properties of the blend containing N‐cyclohexyl‐2‐benzthiazyl sulphenamide/S as vulcanizing system suitable for NBR are higher than those of the blend containing non‐sulfur vulcanizing system (Zno/Mgo and ethylene thiourea) suitable for CR. Both types of rubber (CR and NBR) in the blend are incompatible as two glass transition temperatures have been observed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
The aim of the present study was to improve the compatibility in blends of natural rubber (NR) and polyamide 12 (PA12) by grafting NR with hydrophilic monomer, diacetone acrylamide (DAAM), via seeded emulsion polymerization. The increase in polarity of NR after grafting modification was confirmed by a considerable increase in the polar component of its surface energy. Blends of graft copolymers of NR and poly(diacetone acrylamide) prepared using 10 wt% of DAAM (NR‐g‐PDAAM10) and PA12 were prepared at a 60/40 blend ratio (wt%) using simple blend and dynamic vulcanization techniques. The mechanical and rheological properties of the resulting blends were subsequently investigated and compared with those of the corresponding blends based on unmodified NR. The results show that dynamic vulcanization led to a significant increase in both mechanical and rheological properties of the blends. It was also observed that the dynamically cured NR‐g‐PDAAM10/PA12 blend had smaller particle size of vulcanized rubber dispersed in the PA12 matrix than observed for the dynamically cured NR/PA12 blend. This is due to the compatibilizing effect of DAAM groups present in NR‐g‐PDAAM10 molecule, which decreases the interfacial tension between the two polymeric phases. Therefore, it can be stated that the interfacial adhesion between NR and PA12 was improved by the presence of DAAM groups in NR molecule. This was reflected in the higher tensile properties observed in the dynamically cured NR‐g‐PDAAM10/PA12 blend. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
Summary: Reactive compatibilization of recycled low- or high-density polyethylenes (LDPE and HDPE, respectively) and ground tire rubber (GTR) via chemical interactions of pre-functionalized components in their blend interface has been carried out. Polyethylene component was functionalized with maleic anhydride (MAH) as well as the rubber component was modified via functionalization with MAH or acrylamide (AAm) using chemically or irradiation (γ-rays) induced grafting techniques. The grafting degree and molecular mass distribution of the functionalized polymers have been measured via FTIR and Size Exclusion Chromatography (SEC) analyses, respectively. Thermoplastic elastomer (TPE) materials based on synthesized reactive polyethylenes and GTR as well as ethylene-propylene-diene rubber, EPDM were prepared by dynamic vulcanization of the rubber phase inside thermoplastic (polyethylene) matrix and their phase structure, and main properties have been studied using DSC and mechanical testing. As a final result, the high performance TPE with improved mechanical properties have been developed.  相似文献   

20.
The compatibilization of blends of polyamide 6 with a nitrile butadiene rubber has been investigated. The procedure consists of two steps: modification of the nitrile groups of the rubber into oxazoline in the melt through condensation of ethanolamine with formation of a molecule of ammonia, followed by use of the modified rubber as a compatibilizing precursor which is melt mixed with the polyamide to produce the compatibilized blend. The modification reaction has been detected by NMR analysis and a rheological, mechanical and thermomechanical characterization has been carried out on the all the blends. The results indicate that the modification reaction occurs but the conversion of nitrile into oxazoline is relatively low. Use of the modified rubber in the preparation of binary polyamide/rubber blends, leads to an increase in viscosity, which is typical of compatibilized systems, and to enhanced tensile, impact and thermomechanical properties. These phenomena can be explained by the formation of in situ rubber/polyamide copolymers that act as compatibilizers, due to the reaction between oxazoline and the end groups of the polyamide. The presence of residual low molecular compounds, from the modification or from the purification of the rubber worsens all of the properties and inhibits the compatibilizing effect of the modified rubber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号