首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We measure the absorption spectrum of a two-dimensional electron system (2DES) in a GaAs quantum well in the presence of a perpendicular magnetic field. We focus on the absorption spectrum into the lowest Landau level around nu=1. We find that the spectrum consists of bound electron-hole complexes, trionlike and excitonlike. We show that their oscillator strength is a powerful probe of the 2DES spatial correlations. We find that near nu=1 the 2DES ground state consists of Skyrmions of small size (a few magnetic lengths).  相似文献   

2.
We investigate the electron spin states in the bilayer quantum Hall system at total Landau level filling factor nu=2 exploiting current-pumped and resistively detected NMR. The measured Knight shift, K(S), of 75As nuclei reveals continuous variation of the out-of-plane electronic spin polarization between nearly full and zero as a function of density imbalance. Nuclear spin relaxation measurements indicate a concurrent development of an in-plane spin component. These results provide direct information on the spin configuration in this system and comprise strong evidence for the spin canting suggested by previous experiments.  相似文献   

3.
Optically pumped nuclear magnetic resonance measurements of 71Ga spectra were carried out in an n-doped GaAs/Al(0.1)Ga0.9As multiple quantum well sample near the integer quantum Hall ground state nu = 1. As the temperature is lowered (down to T approximately 0.3 K), a "tilted plateau" emerges in the Knight shift data, which is a novel experimental signature of quasiparticle localization. The dependence of the spectra on both T and nu suggests that the localization is a collective process. The frozen limit spectra appear to rule out a 2D lattice of conventional Skyrmions.  相似文献   

4.
5.
We report thermopower measurements of interacting GaAs bilayer hole systems. When the carrier densities in the two layers are equal, these systems exhibit a reentrant insulating phase near the quantum Hall state at total filling factor nu=1. Our data show that, as the temperature is decreased, the thermopower diverges in the insulating phase. This behavior indicates the opening of an energy gap at low temperature, consistent with the formation of a pinned Wigner solid. We extract an energy gap and a Wigner solid melting phase diagram.  相似文献   

6.
Zero-temperature magnetic phase transitions exhibit an abundance of nearly critical magnetic fluctuations that allow to probe the traditional concepts of the metallic state. For the prototypical heavy-fermion compound, CeCu6−x Au x , a breakdown of the Fermi-liquid properties may be tuned by Au concentration, hydrostatic pressure, or magnetic field. The d-electron weak itinerant ferromagnet ZrZn2, on the other hand, was recently found to display superconductivity in coexistence with ferromagnetism.  相似文献   

7.
8.
Using a "standard" NMR spin-echo technique we determined the spin polarization P of two-dimensional electrons, confined to GaAs quantum wells, from the hyperfine shift of Ga nuclei located in the wells. Concentrating on the temperature ( 0.05 less, similarT less, similar10 K) and magnetic field ( 7 less, similarB less, similar17 T) dependencies of P at Landau level filling factor nu = 1/2, we find that the results are described well by a simple model of noninteracting composite fermions, although some inconsistencies remain when the two-dimensional electron system is tilted in the magnetic field.  相似文献   

9.
10.
11.
The nuclear-spin-relaxation rate 1/T(1) has been measured in a bilayer electron system at and around total Landau level filling factor nu=1. The measured 1/T(1), which probes electron spin fluctuations, is found to increase gradually from the quantum Hall (QH) state at low fields through a phase transition to the compressible state at high fields. Furthermore, 1/T(1) in the QH state shows a noticeable increase away from nu=1. These results demonstrate that, as opposed to common assumption, the electron spin degree of freedom is not completely frozen either in the QH or the compressible states.  相似文献   

12.
The spin wave instability generated by parallel pumping in a tangentially magnetized ferromagnetic film is considered, with simultaneous regard for both the dipole and exchange fields. A dispersion equation and some expressions for the critical microwave threshold of the spin wave parametric excitation have been obtained. The dependence of the critical field on the magnetizing field has an unusually oscillating character. This is connected both with the discreteness of spin wave spectrum and the peculiarities of spin wave polarization in a tangentially magnetized film.  相似文献   

13.
The generation of dark spin wave envelope soliton trains from a continuous wave input signal due to spontaneous modulational instability has been observed for the first time. The dark soliton trains were formed from high dispersion dipole-exchange spin waves propagated in a thin yttrium iron garnet film with pinned surface spins at frequencies situated near the dipole gaps in the dipole-exchange spin wave spectrum. Dark and bright soliton trains were generated for one and the same film through placement of the input carrier frequency in regions of negative and positive dispersion, respectively. Two unreported effects in soliton dynamics, hysteresis and period doubling, were also observed.  相似文献   

14.
15.
16.
We present a phase diagram for a double quantum well bilayer electron gas in the quantum Hall regime at a total filling factor nu=1, based on exact numerical calculations of the topological Chern number matrix and the (interlayer) superfluid density. We find three phases: a quantized Hall state with pseudospin superfluidity, a quantized Hall state with pseudospin "gauge-glass" order, and a decoupled composite Fermi liquid. Comparison with experiments provides a consistent explanation of the observed quantum Hall plateau, Hall drag plateau, and vanishing Hall drag resistance, as well as the zero-bias conductance peak effect, and suggests some interesting points to pursue experimentally.  相似文献   

17.
A mechanism of the formation of the short antiferromagnetic order with a spin density wave (SDW) in the vicinity of the interfaces in the Fe/Cr type multilayers is proposed. The main reason behind the emergence of magnetic ordering with SDWs is the redistribution of charge (and, hence, spin) density in the vicinity of Fe/Cr interfaces, which leads to the paramagnetic phase instability at a temperature considerably higher than the Néel temperature in chromium. The Ginzburg-Landau expansion for the free energy of the system is used for determining the inhomogeneous collinear structures of CDWs and for constructing the phase diagram (the dependence of the transition temperature on the thickness of the antiferromagnetic interlayer). The obtained results are used for discussing the experimental data on neutron scattering and tunnel microscopy.  相似文献   

18.
Using spin dynamics simulations we predict the splitting of the longitudinal spin-wave peak in all antiferromagnets with single site anisotropy into two peaks separated by twice the energy gap at the Brillouin zone center. This phenomenon has yet to be observed experimentally but can be easily investigated through neutron scattering experiments on MnF2 and FeF2. We have also determined that for all classical Heisenberg models the longitudinal propagative excitations are entirely multiple spin wave in nature.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号