首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X-ray absorption is the standard method to probe the unoccupied density of states at a given edge. Here we show that polarized resonant inelastic x-ray scattering in La2CuO4 at the Cu L edge is extremely sensitive to the environment of the Cu atom and the fine structure in the Cu 4p density of states. Combined ab initio and many-body cluster calculations, used for the first time in such a context, show remarkable agreement with experiment. In particular, we identify a nonlocal effect, namely, a transition to off-site Cu 3d states.  相似文献   

2.
We present the c-axis optical conductivity sigma(1c)(omega,T) of underdoped (x=0.12) and optimally doped (x=0.15) La2-xSrxCuO4 from 4 meV to 1.8 eV obtained by a combination of reflectivity and transmission spectra. In addition to the opening of the superconducting gap, we observe an increase of conductivity above the gap up to 270 meV with a maximal effect at about 120 meV. This may indicate a new collective mode at a surprisingly large energy scale. The Ferrell-Glover-Tinkham sum rule is violated for both doping levels. Although the relative value of the violation is much larger for the under-doped sample, the absolute increase of the low-frequency spectral weight, including that of the condensate, is higher in the optimally doped regime. Our results resemble in many respects the observations in YBa(2)Cu(3)O(7-delta).  相似文献   

3.
4.
5.
6.
7.
Combining linear absorption and nonlinear third harmonic generation (THG) experiments, we investigate details of the electronic structure of the highly correlated electronic system in La2CuO4. We demonstrate strong THG mainly due to the charge transfer excitation from O (2p(sigma)) to Cu (3d(x2-y2)). The THG spectrum shows pronounced features due to three-photon and two-photon resonance enhancement as well as quantum interference effects. We obtain excellent agreement with a THG spectrum calculated in terms of the excitonic cluster model and can identify both odd and even symmetry excitation modes.  相似文献   

8.
We report a resonant inelastic x-ray scattering (RIXS) study of charge excitations in the electron-doped high-T(c) superconductor Nd1.85 Ce0.15 CuO4. The intraband and interband excitations across the Fermi energy are separated for the first time by tuning the experimental conditions properly to measure charge excitations at low energy. A dispersion relation with q-dependent width emerges clearly in the intraband excitation, while the intensity of the interband excitation is concentrated around 2 eV near the zone center. The experimental results are consistent with theoretical calculation of the RIXS spectra based on the Hubbard model.  相似文献   

9.
10.
We report a resonant inelastic x-ray scattering study of the dispersion relations of charge-transfer excitations in insulating La(2)CuO(4).. These data reveal two peaks, both of which show two-dimensional characteristics. The lowest energy excitation has a gap energy of approximately 2.2 eV at the zone enter, and a dispersion of approximately 1 eV. The spectral weight of this mode becomes dramatically smaller around (pi, pi). The second peak shows a smaller dispersion ( approximately 0.5 eV) with a zone-center energy of approximately 3.9 eV. We argue that these are both highly dispersive exciton modes damped by the presence of the electron-hole continuum.  相似文献   

11.
12.
Element- and site-specific resonant inelastic x-ray scattering spectroscopy (RIXS) is employed to investigate electron correlation effects in NaV2O5. In contrast to single photon techniques, RIXS at the vanadium L3 edge is able to probe d-d* transitions between V d-bands. A sharp energy loss feature is observed at -1.56 eV, which is well reproduced by a model calculation including correlation effects. The calculation identifies the loss feature as excitation between the lower and upper Hubbard bands and permits an accurate determination of the Hubbard interaction term U = 3.0 +/- 0.2 eV.  相似文献   

13.
14.
Using infrared spectroscopy, we show that spin self-organization in untwinned La2-xSrxCuO4 (LSCO) crystals has profound consequences for the dynamical conductivity sigma(omega). The electronic response of CuO2 planes acquires significant anisotropy in the spin ordered state with enhancement of the conductivity along the direction of the diagonal spin stripes by up to a factor of 2. An examination of the anisotropic response indicates that the diagonal spin texture in weakly doped LSCO is also accompanied by the modulation of charge density. The electronic response of the charge stripes is found to be gapless consistent with the hypothesis of the metallic ground state. Our experiments directly show that the striped ordered systems reveal new degrees of freedom not present in ordinary one-dimensional conductors.  相似文献   

15.
16.
17.
18.
Conductance spectra measurements of highly transparent junctions made of superconducting La2-xSrxCuO4 electrodes and a nonsuperconducting La1.65Sr0.35CuO4 barrier are reported. At low temperatures below Tc, these junctions have two prominent Andreev-like conductance peaks with clear steps at energies Δ1 and Δ2 with Δ2>2Δ1. No such peaks appear above Tc. The doping dependence at 2 K shows that both Δ1 and Δ2 scale roughly as Tc. Δ1 is identified as the superconducting energy gap, while a few scenarios are proposed as for the origin of Δ2.  相似文献   

19.
We present μSR experiments on La2-x Bax CuO4 and La1.6-x Nd0.4 Srx CuO4 for x=0.125. Both of these materials order magnetically with TN\approx30\ K, while a superconducting sample of La1.4 Nd0.4 Sr0.2 CuO4 showed no evidence for static copper moments. Our results support the conclusion that the so‐called “1/8” anomaly in La2-x Bax CuO4 is a result of static (pinned) charge segregation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
The Fe site in LiFePO4 was probed resonantly and non-resonantly at the L2,3 edge. A suspected half-metal, the experimental results were compared to band structure calculations to understand the electronic structure. We found that the probability of promoting an electron to the unoccupied band through simple photoexcitation or through scattering is highly influenced by magnon-exciton coupling. We have also found evidence that the correlation self-energy has a momentum-dependant component, causing spectral renormalization of the Fe 3d PDOS. Our experimental results are consistent with the predicted band, structure of LiFePO4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号