首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 414 毫秒
1.
The role of the heart's complex shape in causing the fragmentation of activation wave fronts characteristic of ventricular fibrillation (VF) has not been well studied. We used a finite element model of cardiac propagation capable of simulating functional reentry on curved two-dimensional surfaces to test the hypothesis that uneven surface curvature can cause local propagation block leading to proliferation of reentrant wave fronts. We found that when reentry was induced on a flat sheet, it rotated in a repeatable meander pattern without breaking up. However, when a model of the rabbit ventricles was formed from the same medium, reentrant wave fronts followed complex, nonrepeating trajectories. Local propagation block often occurred when wave fronts propagated across regions where the Gaussian curvature of the surface changed rapidly. This type of block did not occur every time wave fronts crossed such a region; rather, it only occurred when the wave front was very close behind the previous wave in the cycle and was therefore propagating into relatively inexcitable tissue. Close wave front spacing resulted from nonstationary reentrant propagation. Thus, uneven surface curvature and nonstationary reentrant propagation worked in concert to produce wave front fragmentation and complex activation patterns. None of the factors previously thought to be necessary for local propagation block (e.g., heterogeneous refractory period, steep action potential duration restitution) were present. We conclude that the complex geometry of the heart may be an important determinant of VF activation patterns. (c) 2002 American Institute of Physics.  相似文献   

2.
In cardiac tissue, the propagation of electrical excitation waves is dependent on the active properties of the cell membrane (ionic channels) and the passive electrical properties of cardiac tissue (passive membrane properties, distribution of gap junctions, and cell shapes). Initiation of cardiac arrhythmias is usually associated with heterogeneities in the active and/or passive properties of cardiac tissue. However, as a result of the effect of wave front geometry (curvature) on propagation of cardiac waves, inexcitable anatomical obstacles, like veins and arteries, may cause the formation of self-sustained vortices and uncontrolled high-frequency excitation in normal homogeneous myocardium. (c) 1998 American Institute of Physics.  相似文献   

3.
Target and spiral wave propagation have been observed in single cells such as myocites. Moreover, in the same cells, transition from target waves to planar waves or from the latter to spiral waves was also observed. Considering an oscillatory medium described by the Ginzburg-Landau equation we suggest that such phenomena could be explained if cell nuclei and cell organelles are considered as obstacles in a small bounded medium. We discuss the role of cell geometry as well as the phenomenon of reentry at the cellular level.  相似文献   

4.
Although the mechanisms of fibrillation are no doubt multi-faceted, the geometry of the heart may play a major role in the dynamics of wave propagation during fibrillation [A. T. Winfree, Science 266, 1003-1006 (1994)]. The ventricles are thick chambers made up of sheets of parallel muscle fibers with the direction of fibers rotating across the ventricular walls (rotational anisotropy). The thick walls of the ventricles allow reentry to develop transmurally, provided the wavelength is sufficiently small. Depending on the kinetics of heart cells, the dynamics of rotating waves in three dimensions may be fundamentally different than in two dimensions, leading to destabilization of reentry and ventricular fibrillation (VF) in thick ventricles. The atria have an intricate geometry comprised of a thin sheet of cardiac tissue attached to a very complex network of pectinate muscles. The branching geometry of the pectinate muscles may lead to destabilization of two-dimensional reentry via "long-distance" electrical connections giving rise to atrial fibrillation (AF). Therefore, although fibrillation occurs via complex three-dimensional wave propagation in the ventricles and the atria, the underlying mechanisms and factors that sustain VF and AF are probably different.(c) 1998 American Institute of Physics.  相似文献   

5.
Termination of rotating (spiral) waves or reentry is crucial when fighting with the most dangerous cardiac tachyarrhythmia. To increase the efficiency of the antiarrhythmic drugs as well as finding new prospective ones it is decisive to know the mechanisms how they act and influence the reentry dynamics. The most popular view on the mode of action of the contemporary antiarrhythmic drugs is that they increase the core of the rotating wave (reentry) to that extent that it is not enough space in the real heart for the reentry to exist. Since the excitation in cardiac cells is essentially change of the membrane potential, it relies on the functioning of the membrane ion channels. Thus, membrane ion channels serve as primary targets for the substances, which may serve as antiarrhythmics. At least, the entire group of antiarrhythmics class I (modulating activity of sodium channels) and partially class IV (modulating activity of calcium channels) are believed to destabilize and terminate reentry by decreasing the excitability of cardiac tissue. We developed an experimental model employing cardiac tissue culture and photosensitizer (AzoTAB) to study the process of the rotating wave termination while decreasing the excitability of the tissue. A new scenario of spiral wave cessation was observed: an asymmetric growth of the rotating wave core and subsequent formation of a virtual isthmus, which eventually caused a conduction block and the termination of the reentry.  相似文献   

6.
We present a nonlinear dynamical systems analysis of the transition to conduction block in one-dimensional cardiac fibers. We study a simple model of wave propagation in heart tissue that depends only on the recovery of action potential duration and conduction velocity. If the recovery function has slope >or=1 and the velocity recovery function is nonconstant, rapid activation causes dynamical heterogeneity and finally conduction block away from the activation site. This dynamical mechanism may play a role in the initiation and breakup of spiral waves in excitable media.  相似文献   

7.
A stochastic cellular automaton is developed for modeling waves in excitable media. A scale of key features of excitation waves can be reproduced in the presented framework such as the shape, the propagation velocity, the curvature effect and spontaneous appearance of target patterns. Some well-understood phenomena such as waves originating from a point source, double spiral waves and waves around some obstacles of various geometries are simulated. We point out that unlike the deterministic approaches, the present model captures the curvature effect and the presence of target patterns without permanent excitation. Spontaneous appearance of patterns, which have been observed in a new experimental system and a chemical lens effect, which has been reported recently can also be easily reproduced. In all cases, the presented model results in a fast computer simulation.   相似文献   

8.
Resetting and annihilation of reentrant activity by a single stimulus pulse (S1) or a pair (S1-S2) of coupled pulses are studied in a model of one-dimensional loop of cardiac tissue using a Beeler-Reuter-type ionic model. Different modes of reentry termination are described. The classical mode of termination by unidirectional block, in which a stimulus produces only a retrograde front that collides with the activation front of the reentry, can be obtained for both S1 and S1-S2 applied over a small vulnerable window. We demonstrate that another scenario of termination-that we term collision block-can also be induced by the S1-S2 protocol. This scenario is obtained over a much wider range of S1-S2 coupling intervals than the one leading to a unidirectional block. In the collision block, S1 produces a retrograde front, colliding with the activation front of the pre-existing reentry, and an antegrade front propagating in the same direction as the initial reentry. Then, S2 also produces an antegrade and a retrograde front. However, the propagation of these fronts in the spatial profile of repolarization left by S1 leads to a termination of the reentrant activity. More complex behaviors also occur in which the antegrade fronts produced by S1 and S2 both persist for several turns, displaying a growing alternation in action potential duration ("alternans amplification") that may lead to the termination of the reentrant activity. The hypothesis that both collision block and alternans amplification depend on the interaction between the action potential duration restitution curve and the recovery curve of conduction velocity is supported by the fact that the dynamical behaviors were reproduced using an integro-delay equation based on these two properties. We thus describe two new mechanisms (collision block and alternans amplification) whereby electrical stimulation can terminate reentrant activity. (c) 2002 American Institute of Physics.  相似文献   

9.
Ventricular fibrillation is a lethal condition caused by multiple chaotically wandering electrical wavelets in the heart, reentering their own and each other's territories. The development of effective therapies requires a detailed understanding of how these reentrant waves are initiated. In this Letter, we demonstrate a novel mechanism for inducing reentry, in which chaos synchronization causes large-scale heterogeneities of refractoriness transverse to the direction of propagation. These regions of increased refractoriness create localized conduction block, which induces spiral wave reentry.  相似文献   

10.
In the framework of the two-dimensional field model the influence of the curvature on kink width is discussed. Breading of the kink width in a curved region of the manifold is observed. Examples of kinks on curved manifolds are studied analytically and numerically as well. The deformation of the kink front in the form of the travelling waves propagating along the curved surfaces are found. Enlarging of the travelling wave speed in a curved regions of the manifold is predicted.  相似文献   

11.
唐永林  李大义  陈建国  康俊 《物理学报》1999,48(7):1248-1253
根据对数型折射率饱和非线性介质中光束尺寸和波阵面曲率变化所遵循的方程,详细描述了空间光孤子高斯型呼吸模式.采用势函数分析方法,对光束尺寸一阶导数的正、负号进行了正确的选择,并计算了呼吸模式的光束尺寸、波阵面曲率半径、呼吸周期等重要参量. 关键词:  相似文献   

12.
Using equations governing the variation of the beam size and the curvature of wave front in the logarithmically saturable nonlinear media, the Gaussian-type breath mode of spatial soliton has been described in detail. With the aid of a potential method, the positive and negative signs can be assigned to the first order derivative of the beam size with respect to the propagation distance. Thus, important parameters of the breath mode, such as the beam size, curvatwre radius of the wave front, the period, etc., have been calculated.  相似文献   

13.
The evolution of an excitation front propagating on a nonuniformly curved surface is considered within the framework of a kinematical model of its motion. For the case of a surface with a periodically modulated curvature an exact solution of the front shape is obtained under the assumption of sufficiently small surface deformation. The results of the theoretical consideration are compared with the experimental data obtained with a modified Belousov-Zhabotinsky reaction in a thin nonuniformly curved layer.  相似文献   

14.
In this study, the complex phenomena of propagation and interaction of the blast waves impacting on obstacles were visualized and investigated using a numerical method. Three different distances between an immovable wall and a bomb shelter with a square block inside were considered while a blast source is located in front of wall at the same distance from shelter. The transitional shock phenomena were simulated by means of a multi-block mesh system and a flux computational model. Spatial discretization was performed using the Roe’s upwind schemes; time integration was achieved via the second-order explicit Hancock method. Proof of the numerical results indicated that those results were in close agreement with the experimental data obtained for the wedge flow. For the cases proved, the geometries of the reflected wave patterns followed by the incident blast waves crossing the immovable wall and impacting inside of bomb shelters were similar. However the height of wall has a dominating impact on the effect associated with different incident blast waves from the same blast source. Meanwhile, different reflected overpressure-time histories and streamlines were observed and analyzed for the results obtained.  相似文献   

15.
It is well known that there is considerable spatial inhomogeneity in the electrical properties of heart muscle, and that the many interventions that increase this initial degree of inhomogeneity all make it easier to induce certain cardiac arrhythmias. We consider here the specific example of myocardial ischemia, which greatly increases the electrical heterogeneity of ventricular tissue, and often triggers life-threatening cardiac arrhythmias such as ventricular tachycardia and ventricular fibrillation. There is growing evidence that spiral-wave activity underlies these reentrant arrhythmias. We thus investigate whether spiral waves might be induced in a realistic model of inhomogeneous ventricular myocardium. We first modify the Luo and Rudy [Circ. Res. 68, 1501-1526 (1991)] ionic model of cardiac ventricular muscle so as to obtain maintained spiral-wave activity in a two-dimensional homogeneous sheet of ventricular muscle. Regional ischemia is simulated by raising the external potassium concentration ([K(+)](o)) from its nominal value of 5.4 mM in a subsection of the sheet, thus creating a localized inhomogeneity. Spiral-wave activity is induced using a pacing protocol in which the pacing frequency is gradually increased. When [K(+)](o) is sufficiently high in the abnormal area (e.g., 20 mM), there is complete block of propagation of the action potential into that area, resulting in a free end or wave break as the activation wave front encounters the abnormal area. As pacing continues, the free end of the activation wave front traveling in the normal area increasingly separates or detaches from the border between normal and abnormal tissue, eventually resulting in the formation of a maintained spiral wave, whose core lies entirely within an area of normal tissue lying outside of the abnormal area ("type I" spiral wave). At lower [K(+)](o) (e.g., 10.5 mM) in the abnormal area, there is no longer complete block of propagation into the abnormal area; instead, there is partial entrance block into the abnormal area, as well as exit block out of that area. In this case, a different kind of spiral wave (transient "type II" spiral wave) can be evoked, whose induction involves retrograde propagation of the action potential through the abnormal area. The number of turns made by the type II spiral wave depends on several factors, including the level of [K(+)](o) within the abnormal area and its physical size. If the pacing protocol is changed by adding two additional stimuli, a type I spiral wave is instead produced at [K(+)](o)=10.5 mM. When pacing is continued beyond this point, apparently aperiodic multiple spiral-wave activity is seen during pacing. We discuss the relevance of our results for arrythmogenesis in both the ischemic and nonischemic heart. (c) 1998 American Institute of Physics.  相似文献   

16.
The dependency of wave velocity in reaction-diffusion (RD) systems on the local front curvature determines not only the stability of wave propagation, but also the fundamental properties of other spatial configurations such as vortices. This Letter gives the first derivation of a covariant eikonal-curvature relation applicable to general RD systems with spatially varying anisotropic diffusion properties, such as cardiac tissue. The theoretical prediction that waves which seem planar can nevertheless possess a nonvanishing geometrical curvature induced by local anisotropy is confirmed by numerical simulations, which reveal deviations up to 20% from the nominal plane wave speed.  相似文献   

17.
The numerical studies of the kink motion on a curved manifold were performed. Examples of the curved surfaces are considered in detail. Enlarging the kink width in curved regions of the surface and reduction of its speed is confirmed. Reflection of the kink front from the large curvature areas is observed. The influence of the curvature on the speed of the Vachaspati waves is also observed.  相似文献   

18.
The present work reports new experiments of detonation diffraction in a 2D channel configuration in stoichiometric mixtures of ethylene, ethane, and methane with oxygen as oxidizer. The flow field details are obtained using high-speed schlieren near the critical conditions of diffraction. The critical initial pressure for successful diffraction is reported for the ethylene, ethane and methane mixtures. The flow field details revealed that the lateral portion of the wave results in a zone of quenched ignition. The dynamics of the laterally diffracting shock front are found in good agreement with the recent model developed by Radulescu et al. (Physics of Fluids 2021). The model provides noticeable improvement over the local models using Whitham’s characteristic rule and Wescott, Bdzil and Stewart’s model for weakly curved reactive shocks. These models provide a link between the critical channel height and the critical wave curvature. The critical channel heights and global curvatures are found in very good agreement with the critical curvatures measured independently by Xiao and Radulescu (Combust. Flame 2020) in quasi-steady experiments in exponential horns for three mixtures tested. Furthermore, critical curvature data obtained by others in the literature was found to provide a good prediction of critical diffraction in 2D. These findings suggest that the critical diffraction of unstable detonations may be well predicted by a model based on the maximum curvature of the detonation front, where the latter is to be measured experimentally and account for the role of the cellular structure in the burning mechanism. This finding provides support to the view that models for unstable detonations at a meso-scale larger than the cell size, i.e., hydrodynamic average models, are meaningful.  相似文献   

19.
Gengembre N  Lhemery A 《Ultrasonics》2000,38(1-8):495-499
The principles of pencil elastodynamics and, in more detail, some selected applications of pencil techniques to elastodynamics are described. It is shown how a systematic use of a matrix representation for the wave front curvature and for its transformations simplifies the handling of arbitrary pencils and, consequently, the field computations. Pencil matrix representations for the propagation into homogeneous solids made of isotropic or anisotropic media are derived. The use of matrix representations for pencil reflections on, or refractions through, arbitrarily curved interfaces, together with matrix representations for propagation into homogeneous media, allow us to derive an overall matrix formulation for elastodynamic propagation into complex heterogeneous structures. Combined with the classical Rayleigh integral to account for transducer diffraction effects, the proposed theory is applied to the prediction of ultrasonic fields radiated into complex structures by arbitrary transducers. Examples of interest for application to ultrasonic non-destructive testing are given.  相似文献   

20.
This paper reports the results of a theoretical investigation of spiral wave breakup in model equations of action potential propagation in cardiac tissue. A general formulation of these equations is described in which arbitrary experimentally determined restitution and dispersion curves can in principle be fitted. Spiral wave behavior is studied in two-dimension as a function of a parameter Re which controls the steepness of the restitution curve at short diastolic intervals. Spiral breakup is found to occur when the minimum period T(min), below which a periodically stimulated tissue exhibits alternans in action potential duration, exceeds by a finite amount the spiral rotation period T(S). At this point, oscillations in action potential duration are of sufficiently large amplitude to cause a spontaneous conduction block to form along the wavefront. The latter occurs closer to the initiation point of reentry (spiral tip) with increasing steepness and, hence, in smaller tissue sizes. Spiral breakup leads to a spatially disorganized wave activity which is always transient, except for tissues larger than some minimum size and within a very narrow range of Re which increases with dispersion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号