首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dynamical models of prototype gravastars made of anisotropic dark energy are constructed, in which an infinitely thin spherical shell of a perfect fluid with the equation of state p = (1 − γ)σ divides the whole spacetime into two regions, the internal region filled with a dark energy fluid, and the external Schwarzschild region. The models represent “bounded excursion” stable gravastars, where the thin shell is oscillating between two finite radii, while in other cases they collapse until the formation of black holes. Here we show, for the first time in the literature, a model of gravastar and formation of black hole with both interior and thin shell constituted exclusively of dark energy. Besides, the sign of the parameter of anisotropy (p t p r ) seems to be relevant to the gravastar formation. The formation is favored when the tangential pressure is greater than the radial pressure, at least in the neighborhood of the isotropic case (ω = −1).  相似文献   

2.
The dark energy models with variable equation of state parameter ω are investigated by using law of variation of Hubble’s parameter that yields the constant value of deceleration parameter. Here the equation of state parameter ω is found to be time dependent and its existing range for this model is consistent with the recent observations of SN Ia data, SN Ia data (with CMBR anisotropy) and galaxy clustering statistics. The physical significance of the dark energy models have also been discussed.  相似文献   

3.
A new dark energy model called “ghost dark energy” was recently suggested to explain the observed accelerating expansion of the universe. This model originates from the Veneziano ghost of QCD. The dark energy density is proportional to Hubble parameter, ρ D  = α H, where α is a constant of order LQCD3{\Lambda_{\rm QCD}^3} and ΛQCD ~ 100 MeV is QCD mass scale. In this Letter, we extend the ghost dark energy model to the universe with spatial curvature in the presence of interaction between dark matter and dark energy. We study cosmological implications of this model in detail. In the absence of interaction the equation of state parameter of ghost dark energy is always w D > −1 and mimics a cosmological constant in the late time, while it is possible to have w D < −1 provided the interaction is taken into account. When k = 0, all previous results of ghost dark energy in flat universe are recovered. For the observational test, we use Supernova type Ia Gold sample, shift parameter of cosmic microwave background radiation and the correlation of acoustic oscillation on the last scattering surface and the baryonic acoustic peak from Sloan Digital Sky Survey are used to confine the value of free parameter of mentioned model.  相似文献   

4.
We have investigated general Bianchi type I cosmological models which containing a perfect fluid and dark energy with time varying G and Λ that have been presented. The perfect fluid is taken to be one obeying the equation of state parameter, i.e., p=ωρ; whereas the dark energy density is considered to be either modified polytropic or the Chaplygin gas. Cosmological models admitting both power-law which is explored in the presence of perfect fluid and dark energy too. We reconstruct gravitational parameter G, cosmological term Λ, critical density ρ c , density parameter Ω, cosmological constant density parameter Ω Λ and deceleration parameter q for different equation of state. The present study will examine non-linear EOS with a general nonlinear term in the energy density.  相似文献   

5.
A modified Chaplygin gas (MCG) model of unifying dark energy and dark matter is considered in this paper, in which dark energy interacts with dark matter. Concretely, the evolution of such a unified dark sectors model is studied and the statefinder diagnostic to the MCG model is performed in our model. By analysis, it is shown that the effective equation of state (EoS) parameter of dark energy can cross the so-called phantom divide ω = −1, the behavior of MCG will be like ΛCDM in the future and therefore our Universe will not end up with Big Rip in the future. Furthermore, we plot the evolution trajectories of the MCG model in the statefinder parameter rs plane and illustrate the discrimination between this scenario and the generalized Chaplygin gas (GCG) model.  相似文献   

6.
Om diagnostic is a good geometric method to differentiate one dark energy model from LCDM. We apply three different two-parameter equation of state ω σ (EOS) to Dilaton Dark energy (DDE) model and investigate the Om diagnostic for these cases. We obtain that DDE model can be easily distinguished from LCDM no matter which case is considered. We also investigate the influence of coupled parameter α on the evolutive behavior of Omz. According to the numerical result of Om, we get the current value of equation of state ω σ0=−0.939 which fits the observational data well.  相似文献   

7.
Motivated by the recent works of one of us (Karami and Fehri, Int. J. Theor. Phys. 49:1118, 2010; Phys. Lett. B 684:61, 2010), we study the holographic dark energy in Brans-Dicke gravity with the Granda-Oliveros cut-off proposed recently in literature. We find out that when the present model is combined with Brans-Dicke field the transition from normal state where w D >−1 to the phantom regime where w D <−1 for the equation of state of dark energy can be more easily achieved for than when resort to the Einstein field equations is made. Furthermore, the phantom crossing is more easily achieved when the matter and the holographic dark energy undergo an exotic interaction. We also calculate some relevant cosmological parameters and their evolution.  相似文献   

8.
The present study deals with dissipative future universe without big rip in context of Eckart formalism. The generalised Chaplygin gas, characterised by equation of state p=-\fracAr\frac1ap=-\frac{A}{\rho^{\frac{1}{\alpha}}}, has been considered as a model for dark energy due to its dark-energy-like evolution at late time. It is demonstrated that, if the cosmic dark energy behaves like a fluid with equation of state p=ωρ; ω<−1 as well as Chaplygin gas simultaneously then the big rip problem does not arise and the scale factor is found to be regular for all time.  相似文献   

9.
We develop the reconstruction of the f(T) gravity model according to the holographic dark energy. T is the torsion scalar and its initial value from the teleparallel gravity is imposed for fitting the initial value of the function f(T). The evolutionary nature of the holographic dark energy is essentially based on two important parameters, Ω V  and ω V , respectively, the dimensionless dark energy and the parameter of the equation of state, related to the holographic dark energy. The result shows a polynomial function for f(T), and we also observe that, when Ω V →1 at the future time, ω V may cross −1 for some values of the input parameter b. Another interesting aspect of the obtained model is that it provides a unification scenario of dark matter with dark energy.  相似文献   

10.
The Bianchi type III dark energy model with constant deceleration parameter is investigated. The equation of state parameter ω is found to be time dependent and its existing range for this model is consistent with the recent observations of SN Ia data, SN Ia data (with CMBR anisotropy) and galaxy clustering statistics. The physical aspects of the dark energy models is discussed.  相似文献   

11.
In dilatonic cosmology model, we study the behavior of attractor solution in ωω′ plane, which is defined by the equation of state parameter for the dark energy and its derivative with respect to N (the logarithm of the scale factor a). This is a good method which is useful to the study of classifying the dynamical dark energy models including “freezing” and “thawing” model. We find that our model belongs to “freezing” type model classified in ωω′ plane. We show mathematically the property of attractor solutions which correspond to ω σ =−1, Ω σ =1. The present values of energy density parameter , and are 0.715001, 0.284972 and 0.00002706 respectively, which meet the current observations well. Finally, we can obtain that the coupling between dilaton and matter affects the evolutive process of the Universe, but not the fate of the Universe.  相似文献   

12.
We investigate observational constraints on the generalized Chaplygin gas (GCG) model as the unification of dark matter and dark energy from the latest observational data: the Union SNe Ia data, the observational Hubble data, the SDSS baryon acoustic peak and the five-year WMAP shift parameter. The result is obtained that the best-fit values of the GCG model parameters with their confidence level are A s=0.73−0.06+0.06 (1σ) −0.09+0.09 (2σ), α=−0.09−0.12+0.15 (1σ) −0.19+0.26 (2σ). Furthermore, in this model, we can see that the evolution of equation of state (EOS) for dark energy is similar to quiessence, and its current best-fit value is w 0de=−0.96 with the 1σ confidence level −0.91≥w 0de≥−1.00.  相似文献   

13.
Considering the power-law corrections to the black hole entropy, which appear in dealing with the entanglement of quantum fields inside and outside the horizon, the holographic energy density is modified accordingly. In this paper we study the power-law entropy-corrected holographic dark energy in the framework of Brans-Dicke theory. We investigate the cosmological implications of this model in detail. We also perform the study for the new agegraphic dark energy model and calculate some relevant cosmological parameters and their evolution. As a result we find that this model can provide the present cosmic acceleration and even the equation of state parameter of this model can cross the phantom line w D =−1 provided the model parameters are chosen suitably.  相似文献   

14.
We investigate the observational signatures of the holographic dark-energy models, including both the original model and a model with an interaction term between the dark energy and dark matter. We first delineate the dynamical behavior of such models, especially considering whether they would have a “big rip” for different parameters; then we use several recent observations, including 182 high-quality type Ia supernovae data observed with the Hubble Space Telescope, the SNLS and ESSENCE surveys, 42 latest Chandra X-ray cluster gas mass fraction, 27 high-redshift gamma-ray burst samples, the baryon acoustic oscillation measurement from the Sloan Digital Sky Survey, and the CMB shift parameter from the WMAP three-year result to give more reliable and tighter constraints on the holographic dark-energy models. The results of our constraints for the holographic dark-energy model without interaction is c=0.748−0.009+0.108, Ω m0=0.276−0.016+0.017, and for the model with interaction (c=0.692−0.107+0.135, Ω m0=0.281−0.017+0.017, α=−0.006−0.024+0.021, where α is an interacting parameter). As these models have more parameters than the ΛCDM model, we use the Bayesian Evidence as a model-selection criterion to make comparisons. We found that the holographic dark-energy models are mildly favored by the observations as compared to the ΛCDM model.  相似文献   

15.
A new relation for the density parameter Ω is derived as a function of expansion velocity υ based on Carmeli's cosmology. This density function is used in the luminosity distance relation D L. A heretofore neglected source luminosity correction factor (1 − (υ/c)2)−1/2 is now included in D L. These relations are used to fit type Ia supernovae (SNe Ia) data, giving consistent, well-behaved fits over a broad range of redshift 0.1 < z < 2. The best fit to the data for the local density parameter is Ωm = 0.0401 ± 0.0199. Because Ωm is within the baryonic budget there is no need for any dark matter to account for the SNe Ia redshift luminosity data. From this local density it is determined that the redshift where the universe expansion transitions from deceleration to acceleration is z t = 1.095+0.264 −0.155. Because the fitted data covers the range of the predicted transition redshift z t, there is no need for any dark energy to account for the expansion rate transition. We conclude that the expansion is now accelerating and that the transition from a closed to an open universe occurred about 8.54 Gyr ago.  相似文献   

16.
The static conductivity σ(E) and photoconductivity (PC) at radiation frequencies ħω=10 and 15 meV in Si doped with shallow impurities (density N=1016−6×1016 cm−3, ionization energy ε1≃45 meV) with compensation K=10−4−10−5 in electric fields E=10–250 V/cm are measured at liquid-helium temperatures T. Special measures are taken to prevent the high-frequency part of the background radiation (ħω>16 meV) from striking the sample. It is found that the conductivity σ(E) is due to carrier motion along the D band, which is filled with carriers under the influence of the field E. In fields E<E q (E q ≃100–200 V/cm) the carrier motion consists of hops along localized D states in a 10–15 meV energy band below the bottom of the free band (energy ε=ε1); for E>E q carriers drift along localized D states with energy ε∞ε1−10 meV. An explanation is proposed for the threshold behavior of the field dependence of the photo-and static conductivities. Pis’ma Zh. éksp. Teor. Fiz. 66, No. 4, 232–236 (25 August 1997)  相似文献   

17.
In the derivation of holographic dark energy density, the area law of the black hole entropy plays a crucial role. However, the entropy-area relation can be modified from the inclusion of quantum effects, motivated from the loop quantum gravity, string theory and black hole physics. In this paper, we study cosmological implication of the interacting entropy-corrected holographic dark energy model in the framework of Brans–Dicke cosmology. We obtain the equation of state and the deceleration parameters of the entropy-corrected holographic dark energy in a non-flat Universe. As system’s IR cutoff we choose the radius of the event horizon measured on the sphere of the horizon, defined as Lar(t). We find out that when the entropy-corrected holographic dark energy is combined with the Brans–Dicke field, the transition from normal state where w D > −1 to the phantom regime where w D < −1 for the equation of state of interacting dark energy can be more easily achieved for than when resort to the Einstein field equations is made.  相似文献   

18.
Recent observations of the Cosmic Microwave Background, Supernovae and Sloan Digital Sky Survey (SDSS) show that our universe has a critical energy density, and roughly 2/3 of it is dark energy, which drives the accelerating expansion of the cosmos. In view of the astrophysical data, we find that the equation of state parameter of the dark energy lies in a narrow range around w = −1. In this paper, we construct a cosmology model with a Rarita-Schwinger field to realize the equation of state parameter w < −1 or w > −1 and discuss its stability.  相似文献   

19.
We use recent data: the 192 ESSENCE type Ia supernovae (SNe Ia), the 182 Gold SNe Ia, the three-year WMAP, the SDSS baryon acoustic peak, the X-ray gas mass fraction in clusters and the observational H(z) data, to constrain models of the accelerating universe. Combining the 192 ESSENCE data with the observational H(z) data to constrain the parameterized deceleration parameter, we obtain the best-fit values of the transition redshift and current deceleration parameter z T=0.632−0.127+0.256 and q 0=−0.788−0.182+0.182. Furthermore, using the ΛCDM model and two model-independent equations of state of the dark energy, we find that the combined constraint from the 192 ESSENCE data and four other cosmological observations gives smaller values for Ω 0m and q 0, but a larger value for z T than the combined constraint from the 182 Gold data with four other observations. Finally, according to the Akaike information criterion it is shown that the recently observed data equally support three dark energy models: ΛCDM, w de(z)=w 0 and w de(z)=w 0+w 1ln (1+z).  相似文献   

20.
T. Singh  R. Chaubey 《Pramana》2008,71(3):447-458
The Bianchi Type-I Universe filled with dark energy from a wet dark fluid has been considered. A new equation of state for the dark energy component of the Universe has been used. It is modeled on the equation of state p = γ(ρρ*) which can describe a liquid, for example water. The exact solutions to the corresponding field equations are obtained in quadrature form. The solution for constant deceleration parameter have been studied in detail for both power-law and exponential forms. The cases γ = 1 and γ = 0 have also been analysed.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号