首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A theory of the de Haas-van Alphen effect in type-II superconductors is proposed. The effect of the electron scattering by nonmagnetic impurities in a magnetic field in the potential produced by a nonuniform distribution of the order parameter in a mixed state is investigated. The magnitude of the order parameter and quasiparticle density of states are determined from the solution of the system of Gor’kov equations. It is shown that in the presence of even a small amount of impurities, the superconducting state near the upper critical field is gapless. In this region, the oscillatory (in the magnetic field) contribution to the density of states and the characteristic damping of the amplitude of the magnetization oscillations in the superconducting state are found. Zh. éksp. Teor. Fiz. 112, 1873–1892 (November 1997)  相似文献   

2.
Solutions of the modified London equations are derived for a vortex lattice in a thin film from high-temperature superconductors. The nuclear magnetic resonance line profile in the thin film from high-temperature superconductors of different thicknesses d is calculated with allowance for variable inhomogeneity of the local magnetic field of the vortex lattice. It is demonstrated that the nuclear magnetic resonance line profile changes significantly with d, which can give additional information on the superconductor parameters (including the symmetry type of the vortex lattice and the anisotropy parameter Γ). __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 16–19, November, 2005.  相似文献   

3.
It was proven experimentally that the structural disordering inherent to fine-grained high-temper- ature YBa2Cu3O y superconductors (with an average grain size of 〈D〉 < 2 μm) leads to a reduction of the level of hole doping and the creation of features inherent to the pseudogap state (antiferromagnetic correlations and the lowered density of states at the Fermi level) even in samples with optimum oxygen content y ≈ 6.92.  相似文献   

4.
We analyze the magnetic properties through two-orbital Hubbard model with the spin–orbit coupling (SOC) interaction in the iron-based superconductors. With the help of the Ising approximation for the Hund’s coupling between the itinerant electrons and the localized spins, we give a self-consistent account of the various magnetic orders observed in pnictides and the pairing symmetry. We also calculate the local density of states (LDOS) of the vortex state when a magnetic field is applied. The LDOS without SOC shows no resonant peak at the vortex core center in the superconducting state, while it shows an obvious resonant peak when SOC is applied.  相似文献   

5.
Thermal conductivity κ xx(T) under a field is investigated in d x2 - y2-wave superconductors and isotropic s-wave superconductors by the linear response theory, using a microscopic wave function of the vortex lattice states. To study the origin of the different field dependence of κxx(T) between higher and lower temperature regions, we analyze the spatially-resolved thermal conductivity around a vortex at each temperature, which is related to the spectrum of the local density of states. We also discuss the electric conductivity in the same formulation for a comparison. Received 8 December 2001 and Received in final form 20 March 2002 Published online 6 June 2002  相似文献   

6.
The influence of electric fields and currents has been investigated in the high- superconductors YBaCuO and BiSrCaCuO using a point-contact geometry with Ag as the counterelectrode, which reveal switching transitions between states of a different resistance. The origin of this effect in point contacts is associated with electromigration of the oxygen, driven by the electric field as well as by the current-induced “electron wind”. The switching effect preserves its basic features at elevated temperatures up to room temperature and in high magnetic fields up to 10 T. Received 23 November 1998  相似文献   

7.
A theory of the de Haas-van Alphen effect in type-II p-wave and D-wave superconductors (the latter corresponds to the B 1g one-dimensional representation of group D 4h ) has been developed. Solutions for the order parameter and density of quasiparticle states near the upper critical field have been calculated. If the curve enclosing the extremal cross section of the Fermi surface in the plane perpendicular to the external magnetic field coincides with the line of nodes of the superconducting order parameter, the effect of the transition to the superconducting state on the amplitude of magnetization oscillations is negligible. If the line of nodes is oriented differently with respect to the applied magnetic field, the de Haas-van Alphen oscillations are suppressed in a manner qualitatively similar to the case of conventional superconductors. Zh. éksp. Teor. Fiz. 113, 2174–2192 (June 1998)  相似文献   

8.
The magnetic properties of YBa2Cu3O7−x ceramics of various densities and Bi2Sr2CaCu2O8 quasicrystals irradiated with neutrons at fluences of 1016–1019 cm−2 are investigated by a radio-frequency method (in the frequency range f=100–150 MHz). The electromagnetic absorption is used to estimate the parameters of a Josephson medium: the lower critical field, the critical current density, the grain size and intergranular distances, and the penetration depth of the magnetic field in the sample. The hysteresis of electromagnetic absorption in the indicated superconductors is investigated; the hysteresis effect can be used to obtain data on flux pinning processes and flux creep dynamics. It is shown that an increase in the critical current density is observed as a result of the injection of radiation-induced pinning centers. Fiz. Tverd. Tela (St. Petersburg) 39, 28–34 (January 1997)  相似文献   

9.
《中国物理 B》2021,30(10):106802-106802
Theories and experiments on dirty superconductors are complex but important in terms of both theoretical fundamentals and practical applications. These activities are even more challenging when magnetic fields are present because the field distribution, electron density of states, and superconducting pairing potentials become nonuniform. Here, we present tunneling microspectroscopic experiments on Nb C single crystals and demonstrate that Nb C is a homogeneous dirty superconductor. When applying magnetic fields to the samples, we found that the zero-energy local density of states and the pairing energy gap followed the explicit scaling relation proposed by de Gennes for homogeneous dirty superconductors in high magnetic fields. More significantly, our experimental findings indicate that the validity of the scaling relation extends to magnetic field strengths far below the upper critical field, calling for a new nonperturbative understanding of this fundamental property in dirty superconductors. On the practical side, we used the observed scaling relation to derive a simple and straightforward experimental scheme for estimating the superconducting coherence length of a dirty superconductor in magnetic fields.  相似文献   

10.
In tunneling spectroscopy of superconductors the density of states close to the surface or the interface to an insulating tunneling barrier is probed. For d-wave superconductors the particle–hole coherence results in interesting new phenomena at surfaces such as the formation of bound surface states at the Fermi level by Andreev reflection due to a sign change of the order parameter field in different k -directions. The probing of these states represents a phase-sensitive experiment allowing the determination of the order parameter symmetry in superconductors. We summarize the present experimental status with respect to the study of high-temperature superconductors (HTS). We discuss theoretically predicted consequences of a dominating d-wave order parameter in the hole-doped HTS on their tunneling spectra as well as on the physics of high-temperature superconductor Josephson junctions. A comparison of the tunneling spectra obtained for hole- and electron-doped HTS leads to the conclusion that the former have a d-wave, whereas the latter most likely have an anisotropic s-wave order parameter. We also address some unsettled questions related to the presence of a state with broken time-reversal symmetry at surfaces and interfaces of d-wave HTS and discuss specific features of d-wave tunnel junctions that have been predicted theoretically but still not been confirmed in experiments.  相似文献   

11.
Andreev bound states at the surface of superconductors are expected for any pair potential showing a sign change in different k-directions with their spectral weight depending on the relative orientation of the surface and the pair potential. We report on the observation of Andreev bound states in high temperature superconductors (HTS) employing tunneling spectroscopy on bicrystal grain boundary Josephson junctions (GBJs). The tunneling spectra were studied as a function of temperature and applied magnetic field. The tunneling spectra of GBJ formed by YBa2Cu3O (YBCO), Bi2Sr2CaCu2O(BSCCO), and La1.85Sr0.15CuO4 (LSCO) show a pronounced zero bias conductance peak that can be interpreted in terms of Andreev bound states at zero energy that are expected at the surface of HTS having a d-wave symmetry of the order parameter. In contrast, for the most likely s-wave HTS Nd1.85Ce0.15CuO4-y (NCCO) no zero bias conductance peak was observed. Applying a magnetic field results in a shift of spectral weight from zero to finite energy. This shift is found to depend nonlinearly on the applied magnetic field. Further consequences of the Andreev bound states are discussed and experimental evidence for anomalous Meissner currents is presented. Received: 17 February 1998 / Revised: 27 April 1998 / Accepted: 23 June 1998  相似文献   

12.
We have observed the BCS-like density of states predicted for energy-gap suppression by nonmagnetic Anderson impurities in superconductors. We show that Mn impurities in Al exhibit no magnetic character and act exclusively as strong resonant scattering sites without producing time-reverse symmetry breaking of Cooper pairs (pair breaking).  相似文献   

13.
A theorem is derived for the Kondo model describing the interaction of conduction electrons with a localized magnetic impurity. The theorem states that the model preserves exact particle-hole symmetry. This implies that for fixed chemical potential the average particle number is unchanged as compared to the noninteracting case independent of temperature and applied magnetic field. The consequences of the symmetry property for the one particle density of states are also investigated. Finally the theorem proves to be a useful tool to check current approximate theories of the Kondo effect on their validity.  相似文献   

14.
A model to describe the critical current density behavior of high-Tc polycrystalline superconductors is proposed for all magnetic field values. The main features of the model are as follows: the transport critical current density is controlled by the weak-link network at grain boundaries. The size distribution of weak links is well represented by a Gamma-type distribution. Finally, the tunneling critical current between grains follows a Fraunhofer diffraction pattern or a modified pattern if the applied magnetic field is lower or higher than the first critical field Hc1.  相似文献   

15.
The stability of resistive states in Bi2223 superconductor without a stabilizing matrix and with decreasing temperature dependence of the resistive-transition index of its I–V characteristic is studied in a steady-state approximation. Analysis is carried out for a superconductor placed in a constant magnetic field when it is slightly cooled by a coolant with a varying working temperature. It is shown that additional stable resistive states may arise in the case of high electric fields and overheats. These (multistable) states are characterized by stable steps in the electric field intensity and temperature, which do not transfer the supercon-ductor into the normal state. The multistable resistive states may be related to the nontrivial variation of the superconductor’s differential resistance. In this case, a decrease in the critical current density of the super-conductor and its related decrease in the resistive-transition index of the I–V characteristic with increasing temperature play the key role in the formation of these states. Their presence should be taken into consideration both in analyzing the stable conditions of high-temperature superconductors and in describing processes observed in superconducting magnets when they pass into the normal state.  相似文献   

16.
An experimental and theoretical study of the magnetic polaron states of two-dimensional excitons in quantum wells based on semimagnetic semiconductors (Cd,Mn)Te is reported. It is shown that magnetic-polaron formation in in-plane magnetic fields leads to a lowering of the system symmetry, provided the fields are not too strong. The magnetic moment of the polaron thus formed is not parallel to the external magnetic field and contains a component normal to the quantum-well plane. This spontaneous lowering of the symmetry results in a change of the polarization characteristics of the luminescence from magnetic polaron states and in a weakening (compared to the three-dimensional case) in the efficiency of magnetic field-induced polaron suppression. Fiz. Tverd. Tela (St. Petersburg) 39, 2079–2084 (November 1997)  相似文献   

17.
Effects accompanying the interaction of a flow of preionized inert gas with a magnetic field are studied: selective electron heating, the development of nonequilibrium ionization, and the onset of the ionization instability. Local and average densities and temperatures of the electrons are measured and the average ionization rate is determined. It is found that the average electron density increases as the magnetic induction is raised, in both stable and ionization unstable plasmas. The difference in the rates at which ionization develops in these two states is revealed. The mechanism for the coupling between the average ionization rate in an ionization unstable plasma and the spatial-temporal characteristics of the plasma inhomogeneities is established. Zh. Tekh. Fiz. 69, 56–61 (November 1999)  相似文献   

18.
The magnetic resonance lineshape of paramagnetic ion-nuclei in metals is calculated using the temperature Green functions method and is analyzed for limiting cases of fast and slow spin lattice relaxation of localized moments. The longitudinal spin lattice relaxation rate for paramagnetic ion-nuclei in type II superconductors due to the hyperfine coupling with local moments is calculated. The influence of the fluctuation coupling of electrons on relaxation of paramagnetic ion-nuclei in “dirty” type II superconductors is investigated in magnetic field slightly above the upper critical field Hc2.  相似文献   

19.
Electron fractionalization is intimately related to topology. In one-dimensional systems, fractionally charged states exist at domain walls between degenerate vacua. In two-dimensional systems, fractionalization exists in quantum Hall fluids, where time-reversal symmetry is broken by a large external magnetic field. Recently, there has been a tremendous effort in the search for examples of fractionalization in two-dimensional systems with time-reversal symmetry. In this Letter, we show that fractionally charged topological excitations exist on graphenelike structures, where quasiparticles are described by two flavors of Dirac fermions and time-reversal symmetry is respected. The topological zero modes are mathematically similar to fractional vortices in p-wave superconductors. They correspond to a twist in the phase in the mass of the Dirac fermions, akin to cosmic strings in particle physics.  相似文献   

20.
We study the local density of states at the surface of a chiral p-wave superconductor in the presence of a weak magnetic field. As a result, the formation of low-energy Andreev bound states is either suppressed or enhanced by an applied magnetic field, depending on its orientation with respect to the chirality of the p-wave superconductor. Similarly, an Abrikosov vortex, which is situated not too far from the surface, leads to a zero-energy peak of the density of states, if its chirality is the same as that of the superconductor, and to a gap structure for the opposite case. We explain the underlying principle of this effect and propose a chirality sensitive test on unconventional superconductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号