首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider a self consistent system of Bianchi type-V gravitational field and a binary mixture of perfect fluid and dark energy. The perfect fluid is taken to be the one obeying the usual equation of state, i.e., p=γρ, with γ∈[0,1] whereas, the dark energy is considered to be either the quintessence like equation of state or Chaplygin gas. The equation of state parameter for dark energy ω is found to be consistent with the recent observations of SNe Ia data (Knop et al., Astrophys. J. 598:102, 2003), SNe Ia data with CMBR anisotropy and galaxy clustering statistics (Tegmark et al., Astrophys. J. 606:702, 2004) and latest a combination of cosmological datasets coming from CMB anisotropies, luminosity distances of high redshift type Ia supernovae and galaxy clustering (Hinshaw et al., Astrophys. J. Suppl. 180:225, 2009; Komatsu et al., Astrophys. J. Suppl. Ser. 180:330, 2009). The physical and geometrical aspects of the models are also discussed in detail.  相似文献   

2.
Bianchi type-I dark energy model with variable equation of state (EoS) parameter is presented in a scalar-tensor theory of gravitation proposed by Brans and Dicke (Phys. Rev. 124:925, 1961). To get a determinate solution of the field equations we will take the help of special law of variation for Hubble’s parameter presented by Bermann (Nuovo Cimento B. 74:182, 1983) which yields a dark energy cosmological model with negative constant deceleration parameter. It is observed that this dark energy cosmological model always represents an accelerated and expanding universe and also consistent with the recent observations of type-Ia supernovae. Some physical and geometrical properties of the model are also discussed.  相似文献   

3.
An axially symmetric Bianchi type-I space time with variable equation of state (EoS) parameter and constant deceleration parameter has been investigated in scale covariant theory of gravitation formulated by Canuto et al. (Phys. Rev. Lett. 39:429, 1977). With the help of special law of variation for Hubble’s parameter proposed by Bermann (Nuovo Cimento 74B:182, 1983) a dark energy cosmological model is obtained in this theory. Some physical and kinematical properties of the model are also discussed.  相似文献   

4.
With the dark energy phenomena explored over a decade,in this present work we discuss a specific case of the generalized Einstein-aether theories,in which the modified Friedmann equation is similar to that in the Dvali-Gabadadze-Porrati(DGP) brane world model.We compute the joint statistic constraints on model parameters in this specific case by using the recent type Ia supernovae(SNe Ia) data,the cosmic microwave background(CMB) shift parameter data,and the baryonic acoustic oscillations(BAOs) data traced by the Sloan Digital Sky Survey(SDSS).Furthermore,we analyze other constrains from the observational Hubble parameter data(OHD).The comparison with the standard cosmological model(cosmological constant Λ cold dark matter(ΛCDM) model) is clearly shown;also we comment on the interesting relation between the coupling constant M in this model and the special accelerate scale in the modified Newtonian dynamics(MOND) model initially given by Milgrom with the hope for interpreting the galaxy rotation curves without introducing mysterious dark matter.  相似文献   

5.
We use lookback time versus redshift data from galaxy clusters (Capozziello et al., 2004 [9]) and passively evolving galaxies (Simon et al., 2005 [62]), and apply a Bayesian prior on the total age of the Universe based on WMAP measurements, to constrain dark energy cosmological model parameters. Current lookback time data provide interesting and moderately restrictive constraints on cosmological parameters. When used jointly with current baryon acoustic peak and Type Ia supernovae apparent magnitude versus redshift data, lookback time data tighten the constraints on parameters and favor slightly smaller values of the nonrelativistic matter energy density.  相似文献   

6.
In this paper, a spatially homogeneous and anisotropic Bianchi type-I space-time filled with perfect fluid is investigated within the framework of a scalar-tensor theory proposed by Saez and Ballester. Two different physically viable models of the universe are obtained by using a special law of variation for Hubble’s parameter that yields a constant value of deceleration parameter. One of the models is found to generalize a model recently investigated by Reddy et al. (Astrophys. Space Sci. 306:171, 2006). The Einstein’s field equations are solved exactly and the solutions are found to be consistent with the recent observations of type Ia supernovae. A detailed study of physical and kinematical properties of the models is carried out.  相似文献   

7.
Gravitational field equations in Randers-Finsler space of approximate Berwald type are investigated. A modified Friedmann equation and a new luminosity distance-redshift relation is proposed. A best-fit to the Type Ia supernovae (SNe) observations yields that the ΩΛ in the Λ-CDM model is suppressed to almost zero. This fact indicates that the astronomical observations on the Type Ia SNe can be described well without invoking any form of dark energy. The best-fit age of the universe is given. It is in agreement with the age of our galaxy.  相似文献   

8.
We use Hubble parameter versus redshift data from Stern et al. (2010) [1] and Gaztañaga et al. (2009) [2] to place constraints on model parameters of constant and time-evolving dark energy cosmological models. These constraints are consistent with (through not as restrictive as) those derived from supernova Type Ia magnitude-redshift data. However, they are more restrictive than those derived from galaxy cluster angular diameter distance, and comparable with those from gamma-ray burst and lookback time data. A joint analysis of the Hubble parameter data with more restrictive baryon acoustic oscillation peak length scale and supernova Type Ia apparent magnitude data favors a spatially-flat cosmological model currently dominated by a time-independent cosmological constant but does not exclude time-varying dark energy.  相似文献   

9.
The observations of Type Ia supernovae (SN Ia), Baryon Acoustic Oscillations (BAO) and Cosmic Microwave Background radiation (CMB) provide powerful tools for the measurement of cosmological parameters. One of the most useful information encodes in the distance measured by those probes. In this Letter, we test the coherence of the observational information provided by SN Ia, BAO and CMB experiments. We make two kinds of comparison: the first is the constraints on cosmological parameters of the equation of state parameter (EoS) of dark energy (DE) and matter budget parameter ΩmΩm from the latest data by global fitting, and we find the large discrepancy from those different probes. The second comparison is performed among the derived distance information from these observations at certain appointed redshift, the results show that the distance provided by WMAP5 are larger than those from SN Ia and BAO on the whole.  相似文献   

10.
There is an apparent tension between cosmological parameters obtained from Planck cosmic microwave background radiation observations and that derived from the observed magnitude-redshift relation for the type Ia supernova(SNe Ia).Here,we show that the tension can be alleviated,if we first calibrate,with the help of the distance-duality relation,the light-curve fitting parameters in the distance estimation in SNe Ia observations with the angular diameter distance data of the galaxy clusters and then re-estimate the distances for the SNe Ia with the corrected fitting parameters.This was used to explore their cosmological implications in the context of the spatially flat cosmology.We find a higher value for the matter density parameter,m,as compared to that from the original SNLS3,which is in agreement with Planck observations at 68.3%confidence.Therefore,the tension between Planck measurements and SNe Ia observations regarding m can be efectively alleviated without invoking new physics or resorting to extensions for the standard concordance model.Moreover,with the absolute magnitude of a fiducial SNe Ia,M,determined first,we obtained a constraint on the Hubble constant with SNLS3 alone,which is also consistent with Planck.  相似文献   

11.
We use recent data: the 192 ESSENCE type Ia supernovae (SNe Ia), the 182 Gold SNe Ia, the three-year WMAP, the SDSS baryon acoustic peak, the X-ray gas mass fraction in clusters and the observational H(z) data, to constrain models of the accelerating universe. Combining the 192 ESSENCE data with the observational H(z) data to constrain the parameterized deceleration parameter, we obtain the best-fit values of the transition redshift and current deceleration parameter z T=0.632−0.127+0.256 and q 0=−0.788−0.182+0.182. Furthermore, using the ΛCDM model and two model-independent equations of state of the dark energy, we find that the combined constraint from the 192 ESSENCE data and four other cosmological observations gives smaller values for Ω 0m and q 0, but a larger value for z T than the combined constraint from the 182 Gold data with four other observations. Finally, according to the Akaike information criterion it is shown that the recently observed data equally support three dark energy models: ΛCDM, w de(z)=w 0 and w de(z)=w 0+w 1ln (1+z).  相似文献   

12.
Now there is a huge scientific activity in astrophysical studies and cosmological ones in particular. Cosmology transforms from a pure theoretical branch of science into an observational one. All the cosmological models have to pass observational tests. The supernovae type Ia (SNe Ia) test is among the most important ones. If one applies the test to determine parameters of the standard Friedmann-Robertson-Walker cosmological model one can conclude that observations lead to the discovery of the dominance of the ?? term and as a result to an acceleration of the Universe. However, there are big mysteries connected with an origin and an essence of dark matter (DM) and the ?? term or dark energy (DE). Alternative theories of gravitation are treated as a possible solution of DM and DE puzzles. The conformal cosmological approach is one of possible alternatives to the standard ??CDM model. As it was noted several years ago, in the framework of the conformal cosmological approach an introduction of a rigid matter can explain observational data without ?? term (or dark energy). We confirm the claim with much larger set of observational data.  相似文献   

13.
A new relation for the density parameter Ω is derived as a function of expansion velocity υ based on Carmeli's cosmology. This density function is used in the luminosity distance relation D L. A heretofore neglected source luminosity correction factor (1 − (υ/c)2)−1/2 is now included in D L. These relations are used to fit type Ia supernovae (SNe Ia) data, giving consistent, well-behaved fits over a broad range of redshift 0.1 < z < 2. The best fit to the data for the local density parameter is Ωm = 0.0401 ± 0.0199. Because Ωm is within the baryonic budget there is no need for any dark matter to account for the SNe Ia redshift luminosity data. From this local density it is determined that the redshift where the universe expansion transitions from deceleration to acceleration is z t = 1.095+0.264 −0.155. Because the fitted data covers the range of the predicted transition redshift z t, there is no need for any dark energy to account for the expansion rate transition. We conclude that the expansion is now accelerating and that the transition from a closed to an open universe occurred about 8.54 Gyr ago.  相似文献   

14.
Several kinds of astronomical observations, interpreted in the framework of the standard Friedmann–Robertson–Walker cosmology, have indicated that our universe is dominated by a Cosmological Constant. The dimming of distant Type Ia supernovae suggests that the expansion rate is accelerating, as if driven by vacuum energy, and this has been indirectly substantiated through studies of angular anisotropies in the cosmic microwave background (CMB) and of spatial correlations in the large-scale structure (LSS) of galaxies. However there is no compelling direct evidence yet for (the dynamical effects of) dark energy. The precision CMB data can be equally well fitted without dark energy if the spectrum of primordial density fluctuations is not quite scale-free and if the Hubble constant is lower globally than its locally measured value. The LSS data can also be satisfactorily fitted if there is a small component of hot dark matter, as would be provided by neutrinos of mass ∼0.5 eV. Although such an Einstein–de Sitter model cannot explain the SNe Ia Hubble diagram or the position of the “baryon acoustic oscillation” peak in the autocorrelation function of galaxies, it may be possible to do so, e.g. in an inhomogeneous Lemaitre–Tolman–Bondi cosmology where we are located in a void which is expanding faster than the average. Such alternatives may seem contrived but this must be weighed against our lack of any fundamental understanding of the inferred tiny energy scale of the dark energy. It may well be an artifact of an oversimplified cosmological model, rather than having physical reality.  相似文献   

15.
Recently, de Roany and Pacheco (Gen Relativ Gravit, doi:) performed a Newtonian analysis on the evolution of perturbations for a class of relativistic cosmological models with Creation of Cold Dark Matter (CCDM) proposed by the present authors (Lima et al. in JCAP 1011:027, 2010). In this note we demonstrate that the basic equations adopted in their work do not recover the specific (unperturbed) CCDM model. Unlike to what happens in the original CCDM cosmology, their basic conclusions refer to a decelerating cosmological model in which there is no transition from a decelerating to an accelerating regime as required by SNe type Ia and complementary observations.  相似文献   

16.
Spatially Homogeneous and anisotropic Bianchi type-II space time with variable equation of state (EoS) parameter and constant deceleration parameter has been investigated in scale covariant theory of gravitation formulated by Canuto et al. (Phys. Rev. Lett. 39:429, 1977). With the help of special law of variation for Hubble’s parameter proposed by Bermann (Nuovo Cimento 74B:182, 1983) a dark energy cosmological model is obtained in this theory. We use the power law relation between scalar field ? and scale factor R to find the solutions. Some physical and kinematical properties of the model are also discussed.  相似文献   

17.
The dark energy models with variable equation of state parameter ω are investigated by using law of variation of Hubble’s parameter that yields the constant value of deceleration parameter. Here the equation of state parameter ω is found to be time dependent and its existing range for this model is consistent with the recent observations of SN Ia data, SN Ia data (with CMBR anisotropy) and galaxy clustering statistics. The physical significance of the dark energy models have also been discussed.  相似文献   

18.
The Bianchi type III dark energy model with constant deceleration parameter is investigated. The equation of state parameter ω is found to be time dependent and its existing range for this model is consistent with the recent observations of SN Ia data, SN Ia data (with CMBR anisotropy) and galaxy clustering statistics. The physical aspects of the dark energy models is discussed.  相似文献   

19.
We use the Chandra measurements of the X-ray gas mass fraction of 26 rich clusters released by Allen et al. to perform constraints on the holographic dark energy model. The constraints are consistent with those from other cosmological tests, especially with the results of a joint analysis of supernovae, cosmic microwave background, and large scale structure data. From this test, the holographic dark energy also tends to behave as a quintom-type dark energy.  相似文献   

20.
In this review we discuss the evolution of the universe filled with dark energy with or without perfect fluid. In doing so we consider a number of cosmological models, namely Bianchi type I, III, V, VI0, VI and FRW ones. For the anisotropic cosmological models we have used proportionality condition as an additional constrain. The exact solutions to the field equations in quadrature are found in case of a BVI model. It was found that the proportionality condition used here imposed severe restriction on the energy-momentum tensor, namely it leads to isotropic distribution of matter. Anisotropic BVI0, BV, BIII and BIDE models with variable EoS parameter ω have been investigated by using a law of variation for the Hubble parameter. In this case the matter distribution remains anisotropic, though depending on the concrete model there appear different restrictions on the components of energy-momentum tensor. That is why we need an extra assumption such as variational a law for the Hubble parameter. It is observed that, at the early stage, the EoS parameter v is positive i.e. the universe was matter dominated at the early stage but at later time, the universe is evolving with negative values, i.e., the present epoch. DE model presents the dynamics of EoS parameter ω whose range is in good agreement with the acceptable range by the recent observations. A spatially homogeneous and anisotropic locally rotationally symmetric Bianchi-I space time filled with perfect fluid and anisotropic DE possessing dynamical energy density is studied. In the derived model, the EoS parameter of DE (ω(de)) is obtained as time varying and it is evolving with negative sign which may be attributed to the current accelerated expansion of Universe. The distance modulus curve of derived model is in good agreement with SNLS type Ia supernovae for high redshift value which in turn implies that the derived model is physically realistic. A system of two fluids within the scope of a spatially flat and isotropic FRW model is studied. The role of the two fluids, either minimally or directly coupled in the evolution of the dark energy parameter, has been investigated. In doing so we have used three different ansatzs regarding the scale factor that gives rise to a variable decelerating parameter. It is observed that, in the non-interacting case, both the open and flat universes can cross the phantom region whereas in the interacting case only the open universe can cross the phantom region. The stability and acceptability of the obtained solution are also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号