首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A theoretical solution for axially symmetric problems in elastodynamics   总被引:1,自引:0,他引:1  
This paper presents a theoretical solution for the basic equation of axisymmetric problems in elastodynamics. The solution is composed of a quasi-static solution which satisfies inhomogeneous boundary conditions and a dynamic solution which satisfies homogeneous boundary conditions. After the quasi-static solution has been obtained an inhomogeneous equation for dynamic solution is found from the basic equation. By making use of eigenvalue problem of a corresponding homogeneous equation, a finite Hankel transform is defined. A dynamic solution satisfying homogeneous boundary conditions is obtained by means of the finite Hankel transform and Laplace transform. Thus, an exact solution is obtained. Through an example of hollow cylinders under dynamic load, it is seen that the method, and the process of computing are simple, effective and accurate.  相似文献   

2.
王熙  龚育宁 《力学学报》1992,24(1):93-101
本文给出了弹性动力学轴对称问题基本方程的一种理论解。它由满足非齐次边界条件的准静态解和满足齐次边界条件的动态解的叠加构成。在求得准静态解后,代入基本方程,得到动态解所需满足的非齐次方程。由相应的齐次方程的特征值问题,定义了有限Hankel变换。通过这种变换及Laplace变换,求得动态解,从而得到了一个完整的理论解。文中通过对一个实例求解,表明该方法求解过程简便,实用,求解结果精确。  相似文献   

3.
A new analytical method is presented to study the axisymmetric Blot's consolidation of a finite soil layer. Starting from the governing equations of axisymmetric Blot's consolidation, and based on the property of Laplace transform, the relation of basic variables for a point of a finite soil layer is established between the ground surface (z= 0) and the depth z in the Laplace and Hankel transform domains. Combined with the boundary conditions of the finite soil layer, the analytical solution of any point in the transform domain can be obtained. The actual solution in the physical domain can be obtained by inverse Laplace and Hankel transforms. A numerical analysis for the axisymmetric consolidation of a finite soil layer is carried out.  相似文献   

4.
A new analytical method is presented to study the axisymmetric Biot's consolidation of a finite soil layer. Starting from the governing equations of axisymmetric Blot's consolidation, and based on the property of Laplace transform, the relation of basic variables for a point of a finite soil layer is established between the ground surface (z= 0) and the depth z in the Laplace and Hankel transform domains. Combined with the boundary conditions of the finite soil layer, the analytical solution of any point in the transform domain can be obtained. The actual solution in the physical domain can be obtained by inverse Laplace and Hankel transforms. A numerical analysis for the axisymmetric consolidation of a finite soil layer is carried out.  相似文献   

5.
The fundamental transient-thermoelastic problem with body forces and a heat source in vertically inhomogeneous media is investigated by a method presented in this paper. The basic equations in Fourier transforms and Laplace transform are obtained in the form of two sets of first order linear ordinary differential equations inz, Eq. (7). Furthermore, forN-layered media, the general solution in the transformed spaces of thej-th layer is given for fully connected interface between layers, Eq. (11). Finally, under general condition, a closed-form solution for the quasi-static transient displacements, stresses, temperature in the body can be obtained by the convolution theorems for the two integral transforms. In the final solution, the Green's functions can be expressed in terms of Hankel transforms of order zero and unity as well as inverse Laplace transform, and come out rather neatly. Comprehensive Institute of Geotechnical Investigation and Surveying, Ministry of Urban and Rural Construction and Environmental Protection  相似文献   

6.
层状饱和土Biot固结问题状态空间法   总被引:6,自引:1,他引:6  
针对饱和多孔介质空间非轴对Biot固结问题,引入状态变量,构造了两组相比独立的状态变量方程,利用Fourier级数和Laplace-Hankel变换,将状态变量方程转换为两组一阶常微分方程组,提出了均质饱和多孔介质空间非轴对称Biot固结问题的传递矩阵,得到以状态变量和传递矩阵乘积的形式表示的均质饱和多孔介质空间非轴对称Biot固结问题的解,利用层间完全接触的条件,可得到N层饱和多孔介质空间非轴对称Biot固结问题的一般解析表达式,文中考虑几种不同的边界条件,分析了两个算例,数值结果表明该方法具有较高的计算精度和良好的计算稳定性。  相似文献   

7.
The models of the nonlinear radial flow for the infinite and finite reservoirs including a quadratic gradient term were presented. The exact solution was given in real space for flow equation including quadratic gradiet term for both constant-rate and constant pressure production cases in an infinite system by using generalized Weber transform.Analytical solutions for flow equation including quadratic gradient term were also obtained by using the Hankel transform for a finite circular reservoir case. Both closed and constant pressure outer boundary conditions are considered. Moreover, both constant rate and constant pressure inner boundary conditions are considered. The difference between the nonlinear pressure solution and linear pressure solution is analyzed. The difference may be reached about 8% in the long time. The effect of the quadratic gradient term in the large time well test is considered.  相似文献   

8.
In this paper, we develop a model to treat penny-shaped crack configuration in a piezoelectric layer of finite thickness. The piezoelectric layer is subjected to axially symmetric mechanical and electrical loads. Hankel transform technique is used to reduce the problem to the solution of a system of integral equations. A numerical solution for the crack tip fields is obtained for different crack radius and crack position.  相似文献   

9.
A penny-shaped interfacial crack between dissimilar magnetoelectroelastic layers subjected to magnetoelectromechanical loads is investigated,where the magnetoelectrically impermeable crack surface condition is adopted. By using Hankel transform technique,the mixed boundary value problem is firstly reduced to a system of singular integral equations,which are further reduced to a system of algebraic equations. The field intensity factors and energy release rate are finally derived. Numerical results elucidate the eects of crack configuration,electric and/or magnetic loads,and material parameters of the magnetoelectroelastic layers on crack propagation and growth. This work should be useful for the design of magnetoelectroelastic composite structures.  相似文献   

10.
A new method is developed to solve Biot's consolidation of a finite soil layer in the cylindrical coordinate system. Based on the governing equations of Biot's consolidation and the technique of Laplace transform, Fourier expansions and Hankel transform with respect to time t, coordinate θ and coordinate r, respectively, a relationship of displacements, stresses, excess pore water pressure and flux is established between the ground surface (z = 0) and an arbitrary depth z in the Laplace and Hankel transform domain. By referring to proper boundary conditions of the finite soil layer, the solutions for displacements, stresses, excess pore water pressure and flux of any point in the transform domain can be obtained. The actual solutions in the physical domain can be acquired by inverting the Laplace and the Hankel transforms.  相似文献   

11.
A fundamental solution for an infinite elastic medium containing a penny-shaped crack subjected to dynamic torsional surface tractions is attempted. A double Laplace–Hankel integral transform with respect to time and space is applied both to motion equation and boundary conditions yielding dual integral equations. The solution of the derived dual integral equations is based on an analytic procedure using theorems of Bessel functions and ordinary differential equations. The dynamic displacements’ field is obtained by inversion of the corresponding Laplace–Hankel transformed variable. Results of a representative example for a crack subjected to pulse surface tractions are obtained and discussed.  相似文献   

12.
多孔饱和半空间上刚体垂直振动的轴对称混合边值问题   总被引:10,自引:2,他引:10  
金波  徐植信 《力学学报》1997,29(6):711-719
研究圆柱形刚体在多孔饱和半空间上的垂直振动.首先应用Hankel变换求解多孔饱和固体的动力基本方程———Biot波动方程.然后按混合边值条件建立多孔饱和半空间上刚体垂直振动的对偶积分方程,用Abel变换化对偶积分方程为第二类Fredholm积分方程.文末给出了多孔饱和半空间表面动力柔度系数的计算曲线.  相似文献   

13.
In this paper, the diffusion of a line vortex in a second-order fluid is considered. The Hankel transform is used to solve this problem and an exact solution for the velocity distribution is found in terms of a definite integral. The integrand is an oscillatory function and the integration is performed by a numerical technique. It is found that there are pronounced effects of viscoelastic properties on the velocity distribution with respect to that of the Newtonian fluid.  相似文献   

14.
分析了置于无旋不可压理想流体流面上的简支刚塑性圆板受矩形脉冲载荷作用的大挠度动力响应,借助Hankel变换,将液-固耦合作用为在空气中的圆板塑性动力响应问题,进而求解弯矩和膜力联合作用的大挠度运动方程,得到了中载及高载下各相运动的完全解,并提供了数值算例。  相似文献   

15.
陈光敬  秦爱芳 《力学季刊》1999,20(3):316-321
基于粘弹性体经关于时间:作Laplace变换的基本方程的转换及Hankel变换,得到了任意荷载作用情形下,无限粘弹性层不同深度经这两种的位移应力向量间的传递矩阵。运用该传递矩阵可求解成层的层全拼情形的多种弹性模型的空间总理2。本文最后用这种方法计算了一个算例。  相似文献   

16.
The topic of this paper is to show that the integrals of infinite extent representing the surface displacements of a layered half-space loaded by a harmonic, vertical point load can be reduced to integrals with finite integration range. The displacements are first expressed through wave potentials and the Hankel integral transform in the radial coordinate is applied to the governing equations and boundary conditions, leading to the solutions in the transformed domain. After the application of the inverse Hankel transform it is shown that the inversion integrands are symmetric/antimetric in the transformation parameter and that this characteristic is preserved for any number of layers. Based on this fact the infinite inversion integrals are reduced to integrals with finite range by choosing the suitable representation of the Bessel function and use of the fundamental rules of contour integration, permitting simpler analytical or numerical evaluation. A numerical example is presented and the results are compared to those obtained by the CLASSI program.  相似文献   

17.
A study is presented for the large deflection dynamic response of rigid-plastic circular plate resting on potential fluid under a rectangular pressure pulse load.By virtue of Hankel integral transform technique,this interaction problem is reduced toa problem of dynamic plastic response of the plate in vacuum.The closed-formsolutions are derived for both middle and high pressure loads by solving the equationsof motion with the large deflection in the range where both bending moments andmembrane forces are important.Some numerical results are given.  相似文献   

18.
This paper presents an analytical method of solving the elastodynamic problem of a solid sphere.The basic solution of the elastodynamic problem is decomposed into a quasi-static solution satisfying the inhomogeneous compound boundary conditions and a dynamic solution satisfying the homogeneous compound boundary conditions.By utilizing the variable transform,the dynamic equation may be transformed into Bassel equation.By defining a finite Hankel transform,we can easily obtain the dynamic solution for the inhomogeneous dynamic equation.Thereby,the exact elastodynamic solution for a solid sphere can be obtained.From results carried out,we have observed that there exists the dynamic stress-focusing phenomenon at the center of a solid sphere under shock load and it results in very high dynamic stress-peak.  相似文献   

19.
多孔饱和半空间上弹性圆板的动力分析   总被引:6,自引:2,他引:6  
用解析方法研究多孔饱和半空间上弹性圆板的低垂直振动,首先用Hankel变换求解多孔饱和介质动力问题控制方程,然后按混合边值条件建立多孔饱和半空间上弹性板的垂直振动的对偶积分方程,用Abel变换化对偶积分方程为第二类Fredholm积分方程,并给出了数值算例。  相似文献   

20.
N. A. Belov 《Fluid Dynamics》1997,32(6):780-783
The linear problem of the stability of a plane tangential discontinuity occurring at the interface of two counter-streaming inviscid incompressible axisymmetric flows and including a stagnation point is considered. Using the integral Hankel transform, the problem was reduced to the solution of a single elliptic differential equation governing the discontinuity shape. An analysis of this equation by the normal-mode technique leads to a dispersion relation from which there follows the instability of the discontinuity. A similar problem for the plane-symmetric case has previously been studied by the author.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号