首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The current-induced domain wall motion was observed experimentally in the case of the domain wall trapped at the semicircular arc within the U shape Ni80Fe20 wire. The measurement of the current-induced domain wall motion was achieved by adding a biased field before switching field and a critical current density was measured. We found two magnetic domain structures in the U pattern. At zero fields, the vortex domain wall nucleated at the semicircular arc of the U pattern. Continuous magnetic state without wall was investigated in near-switching field.  相似文献   

2.
We have studied current-driven domain wall motion in modified Ga0.95Mn0.05As Hall bar structures with perpendicular anisotropy by using spatially resolved polar magneto-optical Kerr effect microscopy and micromagnetic simulation. Regardless of the initial magnetic configuration, the domain wall propagates in the opposite direction to the current with critical current of 1-2×105 A/cm2. Considering the spin-transfer torque term as well as various effective magnetic field terms, the micromagnetic simulation results are consistent with the experimental results. Our simulated and experimental results suggest that the spin-torque rather than Oersted field is the reason for current-driven domain wall motion in this material.  相似文献   

3.
The temperature dependence of the magnetization reversal dynamics of the chiral molecular ferrimagnet [Mn{(R/S)-pn}]2[Mn{(R/S)-pn}2(H2O)][Cr(CN)6]2 has been studied at low frequencies of 1–1400 Hz, which are characteristic of the domain wall motion. It has been found from the Cole-Cole plots that domain walls undergo relaxation (at temperatures T > 10 K) and creep (at T < 10 K), and the main parameters determining these modes and the transition between them have been determined. It has been shown that the quantitative regularities of the transition between the modes of the domain wall motion correspond to the concepts of the competition between the contributions of two mechanisms to the domain wall retardation (the periodic Peierls relief and random structural defects).  相似文献   

4.
Compositions of Ni0.6Zn0.4Fe2O4 with variable weight percent addition of TiO2 exhibit wall permeability dominance. With increase of TiO2 concentration the permeability decreases which is related to the impedance to the domain wall motion. The permeability obeys the Globus model with evident wall bulging effect.  相似文献   

5.
A theory is constructed for the dynamics and braking of domain walls in ferromagnets when a magnetic field is applied perpendicular to the axis of easy magnetization (i.e., a transverse field H ). The theory is valid for velocities v up to the limiting domain wall velocity v c. The Landau-Lifshitz equations in the dissipationless approximation are used to investigate the motion of domain walls and the change in the character of the wall motion as its velocity v approaches v c. The force acting on a domain wall due to viscous friction is calculated within the framework of generalized relaxation theory, and the dependence of the domain wall velocity v on the forcing field H z is investigated. Calculations of the braking force show that the contributions of various dissipation mechanisms to the friction force have different dependences on the domain wall velocity, which affects the form of the function v=v(H z). The shapes of the curves v(H z) differ very markedly from one another for different values of the field H . The theory developed here can be used to describe the experimental results, in particular the almost linear behavior of v=v(H z) for small H and its strongly nonlinear behavior when H H a, whereas these data cannot be reconciled within the standard theory based on relaxation terms of Hilbert type. Zh. éksp. Teor. Fiz. 112, 953–974 (September 1997)  相似文献   

6.
The retardation of a single domain wall in its motion at subsonic and supersonic velocities in YFeO3 and FeBO3 plates is investigated using the magneto-optical Faraday effect. The experimental results are discussed with due regard for the interaction of the magnetic and elastic subsystems of the crystal.  相似文献   

7.
The lateral motion of a planar domain wall (PDW) in an electric field and the spontaneous rotation of the wall in the initial position after the field is switched off were investigated in the improper ferroelectric-ferroelastic gadolinium molybdate Gd2(MoO4)3, using optical visualization and measurement of the switching currents. The characteristic behavior found for the PDW is attributed to the delay of the volume screening of the depolarizing fields. It is shown that the dependence of the motion of the PDW on the switching duration in an ac field is due to the redistribution of the screening charges. Fiz. Tverd. Tela (St. Petersburg) 41, 126–129 (January 1999)  相似文献   

8.
The domain wall motion in the presence of an in-plane magnetic field Hy perpendicular to the wall is simulated using a fall implicit numerical scheme. Calculations are performed for the drive fields 0 Oe<Hz<15 Oe and in-plane fields -210 Oe?Hy?210 Oe. The relation between the average wall velocity v and the drive field Hz is discussed considering the wall structure. It was found that an in-plane field increases the peak velocity of the wall and extends the range of the drive fields, where the linear mobility relation is valid. A dynamical Bloch line stacking was found for sufficiently large drives. The influence of an in-plane field on the angular span of horizontal Bloch lines is discussed also. In particular the occurrence of 2π-horizontal Bloch lines is described. Numerical results obtained with a full implicit method are compared with the experimental observations of bubble motion and good agreement is found for |Hy|≤100 Oe.  相似文献   

9.
We present a study of the magnetization reversal dynamics in ultrathin Au/Co/Au films with perpendicular magnetic anisotropy, for a Co thickness of 0.5, 0.7 and 1 nm. In these films, the magnetization reversal is dominated by domain nucleation for tCo=0.5, 0.7 nm and by domain wall propagation for tCo=1 nm. The prevalence of domain nucleation for the thickness range 0.5-0.7 nm is different from results reported in the literature, for the same system and for the same thickness range, where the magnetization reversal took place mainly by domain wall motion. We attribute this difference to the effect of roughness of the Au buffer layer on the morphology of the magnetic layer.  相似文献   

10.
A current-induced domain wall motion in magnetic nanowires with a strong structural inversion asymmetry [I.M. Miron, T. Moore, H. Szambolics, L.D. Buda-Prejbeanu, S. Auffret, B. Rodmacq, S. Pizzini, J. Vogel, M. Bonfim, A. Schuhl, G. Gaudin, Nat. Mat. 10 (2011) 419] seems to have novel features such as the domain wall motion along the current direction or the delay of the onset of the Walker breakdown. In such a highly asymmetric system, the Rashba spin-orbit coupling (RSOC) may affect a domain wall motion. We studied theoretically the RSOC effects on a domain wall motion and found that the RSOC, indeed, can induce the domain wall motion along the current direction in certain situations. It also delays the Walker breakdown and for a strong RSOC, the Walker breakdown does not occur at all. The RSOC effects are sensitive to the magnetic anisotropy of nanowires and also to the ratio between the Gilbert damping parameter α and the non-adiabaticity parameter β.  相似文献   

11.
We investigate thermally activated domain wall creep in a system consisting of two ultrathin Co layers with perpendicular anisotropy coupled antiferromagnetically through a 4 nm thick Pt spacer layer. The field driven dynamics of domain walls in the softer Co layer have been measured while keeping the harder Co layer negatively saturated. The effect of the interlayer interaction on the soft layer is interpreted in terms of an effective coupling field, HJHJ, which results in an asymmetry between the domain wall speeds measured under positive and negative driving fields. We show that creep theory remains valid to describe the observed wall motion when the effective coupling field is included in the creep velocity law as a component of the total field acting on the wall. Using the resultant modified creep expression, we determine a value for the effective coupling field which is consistent with that measured from the shift of the soft layer's minor hysteresis loop. The net antiferromagnetic coupling is attributed to a combination of RKKY and orange-peel coupling.  相似文献   

12.
In this paper, the concept of field-driven domain wall motion memory is presented. It is confirmed that a domain is shifted with a carefully designed non-uniform field by micromagnetic simulations. The shift of a domain—a bit—can be established by the motion of two domain walls to the same direction and the same distance. In order to get a better understanding of the domain wall motion under the non-uniform transverse magnetic field, we investigate the motion of the transverse Néel-type domain wall by micromagnetic simulations and the collective coordinate approach. The validity of the equation of motion for the domain wall is confirmed by the micromagnetic simulations as functions of the gradient of the non-uniform field, the saturation magnetization, and the Gilbert damping parameter α.  相似文献   

13.
《Current Applied Physics》2020,20(10):1185-1189
Understanding ferroelectric domain switching dynamics at the nanoscale is a great of importance in the viewpoints of fundamental physics and technological applications. Here, we investigated the intriguing polarity-dependent switching dynamics of ferroelectric domains in epitaxial BiFeO3 (001) capacitors using transient switching current measurement and piezoresponse force microscopy. We observed the distinct behavior of nucleation and domain wall motion depending on the polarity of external electric bias. When applying the negative bias to the top electrode, the sideways domain wall motion initiated by only few nuclei was dominant to polarization switching. However, when applying the positive bias, most of domains started to grow from the pre-existed pinned domains and their growth velocity was much smaller. We suggest that the observed two distinct domain switching behavior is ascribed to the interfacial defect layer.  相似文献   

14.
Contributions from the repolarization of rubidium tetrachlorozincate Rb2ZnCl4 samples near the domain structure freezing temperature (T* ≈ 150K) and the resulting conductivity to amplitudes of the harmonic components of the Sawyer-Tower circuit output signal were separated. The nonlinear dependence of sample polarization (ignoring dielectric loss) and the dependence of instantaneous conductivity on the applied harmonic voltage were determined. It was shown that the shape of the potential profile of domain wall motion changes appreciably over a relatively narrow temperature range near T*.  相似文献   

15.
The photoresponse method is used for studying the relaxation process under pulsed magnetization reversal of monocrystalline films with the composition (Bi,Lu)3(Fe,Ga)5O12 with (210) orientation depending on the amplitude and duration of the remagnetizing pulse. Magnetization reversal occurs through the formation, motion, and destruction of an end domain wall.  相似文献   

16.
We report micromagnetic modeling results of current induced domain wall (DW) motion in magnetic devices with perpendicular magnetic anisotropy by solving the Landau-Lifschitz-Gilbert equation including adiabatic and non-adiabatic terms. A nanostripe model system with dimensions of 500 nm (L)×25 nm (W)×5 nm (H) was selected for calculating the DW motion and its width, as a function of various parameters such as non-adiabatic contribution, anisotropy constant (Ku), saturation magnetization (Ms), and temperature (T). The DW velocity was found to increase when the values of Ku and T were increased and the Ms value decreased. In addition, a reduction of the domain wall width could be achieved by increasing Ku and lowering Ms values regardless of the non-adiabatic constant value.  相似文献   

17.
Magnetic thin films of NiFe and CoNiFe alloys were electrodeposited from three different deposition baths onto copper wires of 100-μm diameter. The magnetic and magnetoimpedance (MI) properties of the samples along with their microstructure were investigated as a function of thiourea additive concentrations (CT) in the plating bath. For all intermediate frequencies, the MI ratio increased with thiourea concentration in plating bath up to a critical concentration of 80 mg/l and then decreased considerably. The change in MI with thiourea concentration in electrodeposition bath was attributed to the grain size reducing action of thiourea, which in turn enhances the soft magnetic properties of the films. At higher concentration of thiourea, the sulfur inclusion increased the magnetic softness and MI value enhanced considerably. The origin of MI lies in the combined effect of domain wall motion and spin rotation, which contributes to permeability. Inductance spectroscopy (IS) was used to evaluate the magnetic characteristic of the samples by modeling coated wires in terms of equivalent electrical circuit; namely parallel LR (inductance and resistance) circuit in series with series LR circuit. The domain wall motion was found to be greatly affected by thiourea addition in the bath, which was revealed through the study of variation of these circuit parameters. The domain wall motion thereby affects the magnetic softness of samples, which is reflected in the MI enhancement.  相似文献   

18.
The (Ni0.20Zn0.60Cu0.20)Fe1.98O4 ferrite was sintered using microwave sintering and conventional sintering technique, respectively. It was found that microwave sintering technique can effectively promote the forward diffusion of ions and thus accelerate the sintering process, resulting in the grain growth and the densification of matrix. At the low frequency of 100 kHz, the magnetizing contribution of domain wall motion is predominant, and compact and coarse matrixes are favorable for domain wall motion, giving rise to improvement of relative initial permeability and loss of ferrites. Using microwave sintering technique, for the (Ni0.20Zn0.60Cu0.20)Fe1.98O4 ferrite, the relative initial permeability μi of about 2000 and the relative loss factor tanδ/μi of about 8.7×10−6 at 100 kHz were achieved at only 980 °C sintering temperature. In addition, the sintering time of ferrites was reduced from 5 to 0.5 h by using microwave sintering technique.  相似文献   

19.
蒋柏林  刘希玲  徐斌  陆宝生 《物理学报》1986,35(12):1598-1602
利用X射线衍射形貌法,研究了五磷酸钕(NdP5O14)晶体中铁弹畴界的衍射衬度。发现在μt=0.6—7范围内,畴界呈现黑的或白的衬度。畴界衍射衬度的特征可归结为(c2-c1=)△c∥g畴界衬度明显△c⊥g畴界衬度消失△c·g>0畴界呈黑衬度△c·g<0畴界呈白衬度利用Penuing-Polder波点迁移原理,对畴界的衬度形成原理做了定性解释。根据畴界的衍射衬度特征,定性讨论了畴界的结构特征。 关键词:  相似文献   

20.
In this work, we determine the domain wall velocity in the low field region and study the domain dynamics in as-cast and annealed bi-stable amorphous glass-covered Fe77.5Si7.5B15 microwires. In particular, from the relation between the domain wall velocity and magnetic field in the adiabatic regime, the power-law critical exponent β, the critical field H0 and the domain wall damping η were obtained. It has been verified that the main source of domain wall damping is the eddy current and spin relaxation, both with a strong relation with the magnetoelastic energy. This energy term is changed by the axial applied stress, which, by its time, modifies the damping mechanisms. It was also verified that the domain wall damping terms present different behavior at low (mainly eddy currents) and high applied stress (spin relaxation).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号