首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(ethylene‐co‐vinyl acetate) (EVA) plastic films are widely used for solar coverings including photovoltaic modules and commercial greenhouse films, but are poor at controlling heat flow. In this work, silica aerogel (SA) nanogels were examined for preparing transparent heat retention EVA films that block far infrared spectra radiation to maintain heat, without compromising the optical performance of the films. SA nanogels were melt‐mixed using a mini twin‐screw extruder with EVA pellets to form SA/EVA composite, which were pressed into thin films with controlled thickness. The composite films were characterized in terms of optical properties using a variety of analytical methods including FTIR, UV–Vis spectroscopy, electron, confocal, and atomic force microscopy. Both thermicity and thermal conductivity of commercial and experimental SA/EVA films were measured. The results demonstrated that the SA/EVA films gave improved infrared retention compared to commercial thermal plastic films without compromising visible light transmission, showing the potential for this approach in next generation heat retention films. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 927–935  相似文献   

2.
In this comparative study, the effect of carbon black (CB) on the thermal ageing characteristics of poly(ethylene‐co‐vinyl acetate) (EVA) was investigated. EVA, containing 13% vinyl acetate (VA), and poly(ethylene‐co‐vinyl acetate)/carbon black mixture (EVA/CB) containing 13% VA and 1% CB were aged at 85°C in air up to 30 weeks. Sol‐gel analysis experiments were made to determine the percentage gelation of both virgin and aged samples. FT‐IR measurements were performed to follow the chemical changes which took place in the samples during ageing. Dynamic and isothermal thermogravimetric studies were performed for determination of the thermal stabilities of virgin and aged samples. Sol‐gel analysis results showed that EVA itself has a tendency to form a gel under thermal treatment, whereas EVA/CB never becomes a gel when being thermally aged under the same conditions. As a result of FT‐IR measurements, some oxidation products such as ketone, lactone and vinyl species were observed through thermal ageing of EVA. It is also clear that these kind of oxidation products did not appear to a considerable extent in EVA/CB. Thermal analysis experiments exhibit that thermal stability of EVA decreased through thermal ageing; whereas that of EVA/CB remained almost unchanged. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
The effect of the degree of grafting (DOG) on the thermal behavior of poly(vinylbenzyl chloride)‐grafted poly(ethylene‐co‐tetrafluoroethylene) (ETFE‐g‐PVBC) films was investigated by differential scanning calorimetry (DSC), X‐ray diffraction (XRD), dynamic mechanical analysis ( DMA), FT‐IR, and thermogravimetric analysis (TGA) instruments. Several ETFE‐g‐PVBC films with various degrees of grafting, including 10, 24, 41, 60, and 94%, were prepared using a radiation grafting technique. The DSC and XRD results of the ETFE‐g‐PVBC films revealed that the crystallinity of the films decreased as the DOG increased. The DMA and FT‐IR results of the films indicated that a crosslinking reaction occurred at temperatures above 250 °C. In the thermal properties of the grafted films, an increase in the DOG led to an increase in the decomposition temperature. The activation energy (Ea) of the thermal decomposition was calculated using Kissinger's equation from TGA results. The Ea value of the PVBC graft chain was found to increase as the DOG increased, indicating that the crosslinking reaction of ETFE‐g‐PVBC films increased with an increase in the DOG during the thermal degradation process. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 517–525  相似文献   

4.
In this comparative study, the effect of carbon black (CB) on the UV aging characteristics of poly(ethylene‐co‐vinyl acetate) (EVA) was investigated. EVA, containing 13% vinyl acetate (VA), and poly(ethylene‐co‐vinyl acetate)/carbon black mixture (EVA/CB), containing 13% VA and 1% CB, were aged by means of UV light with a wavelength in the vicinity of 259 nm, in air, up to 400 hr. Sol‐gel analyses were made to determine the percentage gelation of both virgin and aged samples. FT‐IR measurements were performed to follow the chemical changes which took place in the samples during aging. Dynamic and isothermal thermogravimetry studies were performed for determination of the thermal stabilities of virgin and aged samples. Sol‐gel analysis results showed that EVA itself has a tendency to form a gel under UV irradiation. EVA/CB, however, becomes a gel to a smaller extent, comparatively, under the same conditions. As a result of FT‐IR measurements, some oxidation products such as ketone, lactone and vinyl species were observed through UV ageing of EVA and EVA/CB. Thermal analysis experiments exhibited that the thermal stabilities of EVA and EVA/CB decreased, to a similar extent through UV aging. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
The dynamic mechanical behavior of uncrosslinked (thermoplastic) and crosslinked (thermosetting) acrylonitrile butadiene rubber/poly(ethylene‐co‐vinyl acetate) (NBR/EVA) blends was studied with reference to the effect of blend ratio, crosslinking systems, frequency, and temperature. Different crosslinked systems were prepared using peroxide (DCP), sulfur, and mixed crosslink systems. The glass‐transition behavior of the blends was affected by the blend ratio, the nature of crosslinking, and frequency. sThe damping properties of the blends increased with NBR content. The variations in tan δmax were in accordance with morphology changes in the blends. From tan δ values of peroxide‐cured NBR, EVA, and blends the crosslinking effect of DCP was more predominant in NBR. The morphology of the uncrosslinked blends was examined using scanning electron and optical microscopes. Cocontinuous morphology was observed between 40 and 60 wt % of NBR. The particle size distribution curve of the blends was also drawn. The Arrhenius relationship was used to calculate the activation energy for the glass transition of the blends, and it decreased with an increase in the NBR content. Various theoretical models were used to predict the modulus of the blends. From wide‐angle X‐ray scattering studies, the degree of crystallinity of the blends decreased with an increasing NBR content. The thermal behavior of the uncrosslinked and crosslinked systems of NBR/EVA blends was analyzed using a differential scanning calorimeter. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1556–1570, 2002  相似文献   

6.
We studied the interaction of water in poly(ethylene‐co‐vinyl acetate) of various vinyl acetate compositions and poly(vinyl acetate), on the basis of the infrared spectrum of the water dissolved therein. The spectrum shows a very sharp and distinct band at about 3690 cm?1 (named as A), and less‐sharp two bands around 3640 (B) and 3550 cm?1 (C), the A band being outstanding especially at a low vinyl acetate composition. As the vinyl acetate composition increases, the A band decreases in intensity relative to the C band, whereas the B band increases contrarily. Analysis of the spectral change has elucidated that one‐bonded water (of which one OH is hydrogen‐bonded to the C?O of an ester group and the other OH is free) and two‐bonded water (each OH of which is hydrogen‐bonded to one C?O) coexist in the copolymer and that two‐bonded water increases in relative population with increasing vinyl acetate composition. Dissolved water is entirely two‐bonded in poly(vinyl acetate), in which C?O groups are densely distributed in the matrix. We proved that dissolved water in polymers is hydrogen‐bonded through one or two OH groups to the possessed functional groups but does not cluster. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 777–785, 2005  相似文献   

7.
Poly(L ‐lactide)/multiwalled carbon nanotubes (PLLA/MWCNTs) nanocomposite recently attracts much attention because of its excellent comprehensive properties including improved thermostability, tensile strength, and conductivity. However, the nanocomposite exhibits similar brittleness compared with unmodified PLLA. In this work, a polar elastomer, that is, ethylene‐co‐vinyl acetate (EVA), was introduced into PLLA/MWCNTs nanocomposite. The selective distribution of MWCNTs and the effects of EVA on crystalline structure of PLLA were investigated using scanning electron microscope, transmission electron microscope, differential scanning calorimetry, and wide angle X‐ray diffraction. The results show that the presence of EVA induces the change of the distribution of MWCNTs in the nanocomposites, and consequently, the cold crystallization of PLLA is prevented. With the increase of EVA content, both the ductility and the impact resistance of PLLA/FMWCNTs are improved greatly, indicating the toughening effect of EVA on PLLA/MWCNTs nanocomposite. The decreased tensile strength and modulus can be compensated through annealing treatment. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

8.
Nanocomposites of poly(vinyl alcohol)/silica nanoparticles (PVA-SNs) were prepared by in-situ radical copolymerization of vinyl silica nanoparticles functionalized by vinyltriethoxysilane (VTEOS) and vinyl acetate with benzoyl peroxide (BPO, i.e., initiator), subsequently saponified via direct hydrolysis with NaOH solution. The resulting vinyl silica nanoparticles, PVA-SNs were characterized by means of fourier transformation spectroscopy (FTIR), transmission electron microscopy (TEM) and the elemental analysis method. Effects of silica nanoparticles on viscosity and alcoholysis of PVA-SNs were studied by a ubbelohode capillary viscometer and the back titration method. The morphological structure of PVA-SN films was investigated by scanning electron microscopy (SEM). Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and tensile test were used to determine the thermal and mechanical properties of PVA-SN films. The results indicated that the content of vinyl groups on the surface of the vinyl silica nanoparticles was up to 3.02 mmol/g and vinyl silica nanoparticles had been successfully copolymerized with vinyl acetate. Furthermore, compared to pure PVA, silica nanoparticles bonded with polymer matrix in a low concentration affected the viscosity and alcoholysis of the PVA-SNs materials. At the same time, it resulted in the improvement of the thermal and mechanical properties of the PVA-SN materials due to a strong interaction between silica nanoparticles and the polymer matrix via a covalent bond. It could be found that the optical clarity of the membrane was changed through UV-Vis absorption spectrum due to the introduction of silica nanoparticles.  相似文献   

9.
The transport behavior of uncrosslinked and crosslinked poly(ethylene‐co‐vinyl acetate) membranes has been investigated using normal alkanes as probe molecules, in the temperature range of 30–60 °C. Benzoyl peroxide was used for crosslinking the matrix. It has been observed that, a critical concentration of crosslinker is necessary for maximum solvent uptake, followed by a decrease at higher concentration. The effect of free volume on liquid transport was investigated by positron annihilation lifetime spectroscopy. The mechanism of transport has been found to deviate from the regular Fickian behavior. The dependence of the transport coefficients on crosslink density, nature of penetrants, and temperature was studied. The polymer–solvent interaction parameter, enthalpy, and entropy of sorption have also been estimated from the transport data. The affine and phantom models for chemical crosslinks were used to predict the nature of crosslinks. Finally, the experimental sorption data were compared with theoretical predictions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2470–2480, 2007  相似文献   

10.
In this present study, biodegradable PBAT nanocomposites containing different weight percentages (1, 3, 5, 7, and 10% w/w) of TiO2 nanoparticles were prepared by using solvent casting technique, chloroform as a solvent. The microstructure and morphology of the as‐synthesized poly(butylene adipate‐co‐terephthalate) (PBAT)/TiO2 nanocomposite films were characterized by Fourier‐transform infrared, X‐ray diffraction, scanning electron microscopy, and transmission electron microscope. The thermal degradation of PBAT composites was studied by using thermogravimetric analysis. The mechanical strength of the films was improved by increasing TiO2 concentration. Tensile strength increased from 32.60 to 63.26 MPa, respectively. Barrier properties of the PBAT/TiO2 nanocomposites were investigated by using an oxygen permeability tester. The oxygen permeability (oxygen transmission rate) decreased with increasing the TiO2 nanoparticle concentrations. The PBAT/TiO2 nanocomposite films showed profound antimicrobial activity against both Gram‐positive and Gram‐negative foodborne pathogenic bacteria, namely, Escherichia coli and Staphylococcus aureus, to understand to the zone of inhibition. These results indicated that filler–polymer interaction is important and the role of the TiO2 as a reinforcement in the nanocomposites was evident. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
The diffusion and transport of organic solvents through crosslinked nitrile rubber/poly(ethylene‐co‐vinyl acetate) (NBR/EVA) blends have been studied. The diffusion of cyclohexanone through these blends was studied with special reference to blend composition, crosslinking systems, fillers, filler loading, and temperature. At room temperature the mechanism of diffusion was found to be Fickian for cyclohexanone–NBR/EVA blend systems. However, a deviation from the Fickian mode of diffusion is observed at higher temperature. The transport coefficients, namely, intrinsic diffusion coefficient (D*), sorption coefficient (S), and permeation coefficient (P) increase with the increase in NBR content. The sorption data have been used to estimate the activation energies for permeation and diffusion. The van't Hoff relationship was used to determine the thermodynamic parameters. The affine and phantom models for chemical crosslinks were used to predict the nature of crosslinks. The experimental results were compared with the theoretical predictions. The influence of penetrants transport was studied using dichloromethane, chloroform, and carbon tetrachloride. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1815–1831, 1999  相似文献   

12.
Toughening of poly( L ‐lactide) (PLLA) by elastomer attracts much attention in recent years; however, it is usually associated with the deterioration of modulus and/or strength, resulting in limitation in many applications of the material. In this work, functionalized multiwalled carbon nanotubes (FMWCNTs) were introduced into ethylene‐co‐vinyl acetate toughened PLLA blends. The effects of FMWCNTs content on crystalline structure of PLLA matrix and the morphology of the blends, as well as the selective distribution of FMWCNTs in the ternary nanocomposites were investigated using differential scanning calorimetry (DSC), wide angle X‐ray diffraction, scanning electron microscope, and transmission electron microscope. The results show that FMWCNTs exhibit excellent nucleation role in improving the cold crystallization behaviors of PLLA during the annealing and/or DSC heating processes. The results of mechanical property measurements demonstrate that the modulus, strength, and ductility of the blends can be further improved simultaneously through introducing FMWCNTs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Transparent plasticized gels with good mechanical, optical, and dielectric properties have important applications in various fields. We prepared a new gel using a poly(butylene terephthalate)‐co‐poly(alkylene glycol terephthalate) (PBT‐co‐PAGT) copolymer and a plasticizer, dibutyl adipate (DBA). This method improved the polymer crystallinity, and suppressed particle formation in cast‐films when the polymer was dissolved in 1,1,1,3,3,3‐hexafluoro‐2‐propanol, followed by solvent evaporation, and enabled uniform swelling of the polymer network by the plasticizer to form a transparent and flexible gel. The dielectric constants of the developed PBT‐co‐PAGT/DBA gels are much higher than those of PBT‐co‐PAGT films at low frequency. We believe that these PBT‐co‐PAGT/DBA gels could be used as photovoltaic, dielectric, and actuator materials. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 829–832  相似文献   

14.
Solid‐state nuclear magnetic resonance spectroscopy and relaxation measurements, together with DSC, have been used to elucidate the structures and molecular dynamics in poly(ethylene‐co‐vinyl acetate) (EVA). It has been found that besides immobile orthorhombic and monoclinic crystalline phases, the third mobile crystalline phase (possibly the phase) of a considerable amount (36% of total crystalline phases) appears in the EVA samples, which forms during room‐temperature aging as a result of the secondary crystallization and melts at temperature somewhat higher than room temperature. Such a mobile crystalline phase has not only the well‐defined chemical shift of its own, but also has different molecular mobility from the orthorhombic phase. The mobile crystalline phase is characterized by the rapid relaxation of the longitudinal magnetization, which is caused by conventional spin‐lattice relaxation, while the slow relaxation of the longitudinal magnetization occurring in the orthorhombic phase is originated from the chain diffusion. In addition, the amorphous phase also contains two components: an interfacial amorphous phase and a melt‐like amorphous phase. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2864–2879, 2006  相似文献   

15.
This study is concerned with the development of new polymers that could be deposited via cathodic electrocoating methods on metal surfaces. The synthetic strategy is based on the incorporation of cationic functionalities into commercial polymers. Polyalkyl acrylic or methacrylic ester copolymers were reacted with primary or secondary amines and aminoalkanols or their mixtures. Depending on the proportion of the acrylic or methacrylic ester in the starting material and the extent of the chemical modification, the resulting amide functionalized polymers are soluble or dispersible in water and could be used as aqueous dispersions for cathodic electrodepositions. Hindered amine catalysts, such as diazabicyclo[2.2.2]octane, accelerate the chemical transformation leading to higher level of functionalization. Among different amines screened, mixtures of oleylamine and ethanolamine proved to produce the best results. A poly(ethylene‐co‐methyl acrylate‐co‐maleic anhydride) [poly(E‐co‐MA‐co‐MAH)] was aminolyzed in solution with a mixture of 50/50 (mol % ratio) of oleylamine/ethanolamine and used to generate aqueous dispersions via phase inversion from methyl isobutyl ketone solutions. These dispersions exhibit particle sizes in the submicron range and zeta potential values indicating a good stability. They could be electrodeposited to give films of high elasticity according to the nanomechanical tests. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
Adsorbed poly(ethylene‐stat‐vinyl acetate) (PEVAc) on fumed silica was studied using temperature‐modulated differential scanning calorimetry (TMDSC) and FT‐IR spectroscopy. The properties of the copolymers were compared with poly(vinyl acetate) (PVAc) and low density polyethylene (LDPE) as references. TMDSC analysis of the copolymer‐silica samples in the glass transition region was complicated for the copolymers because of the ethylene crystallinity. Nevertheless, examination of the glass transition region for small adsorbed amounts of these copolymers indicated the presence of tightly‐ and loosely‐bound polymer segments, similar to other polymers which have an attraction to silica. Compared with bulk polymers with the same composition, the tightly‐bound polymers showed an increased glass transition temperature (Tg) and a loosely‐bound fraction with a lower Tg than bulk. FT‐IR spectra of the surface copolymers indicated that the fraction of bound carbonyls (p) increased as the fraction of vinyl acetate in the copolymers decreased, consistent with the notion that the carbonyls from vinyl acetate preferentially find their way to the silica surface. Spectra from samples with different adsorbed amounts of polymer were used to obtain the amount of bound polymer (Mb) and the ratio of molar absorption coefficients of bound carbonyls to free carbonyls (X). The copolymers had very large p values (up to 0.8) at small adsorbed amounts and dependent on the composition of the polymer. However, an analysis of the bound fractions, based on only the vinyl acetate groups, superimposed the data, suggesting that the ethylene units simply dilute the vinyl acetate groups in the surface polymer. The sample with the smallest fraction of vinyl acetate did not show this behavior and may be considered to be “carbonyl poor.” © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 727–736  相似文献   

17.
18.
Transparent [90% transmittance at 550 nm at a sheet resistance (Rs) of 279 Ω sq?1] poly(3,4‐ethylenedioxythiophene) (PEDOT) films with electrical conductivities up to 1354 S cm?1 are prepared using base‐inhibited vapor phase polymerization at atmospheric pressure. The influence of reaction conditions, such as temperature and growth time, on the film formation is investigated. A simple and convenient two‐electrode method is used for the in situ measurement of resistance, enabling to investigate the growth mechanism of polymer films and the influence of different parameters (relative humidity and the amount of oxidant) on the film growth. Low humidity exerts a detrimental effect on film growth and conductivity. In situ Rs measurements suggest that a large structural change occurs upon washing the PEDOT‐oxidant film. © 2014 Wiley Periodicals, Inc. J Polym Sci Part B: Polym. Phys. 2014 , 52, 561–571  相似文献   

19.
Highly dispersed gold nanoparticles within mesoporous thin films (MTFs) have been synthesized through a newly developed controllable strategy, in which (1,4)-bis(triethoxysilyl)propane tetrasufide (BPTS) organosiloxane coupling agent was co-assembled with tetraethyl orthosilicate (TEOS) to form organic groups functionalized mesoporous composite films followed with oxidization, ion-exchange with Au(en)2Cl3 (en: 1,2-ethanediamine) compound and calcination under hydrogen/nitrogen mixing atmosphere. Small-angle X-ray diffraction (XRD) characterization indicated that up to 10 mol% of BPTS could be incorporated into mesoporous hybrid films, and that would not breakup the structural integrity and long-range periodicity. The loaded gold nanoparticles were uniformly distributed due to the molecular level homogenous mixing of the BPTS precursor with TEOS, and its concentration could be controlled via the original ratio of BPTS to TEOS. The nanoparticles had a narrow size distribution with diameters in the size range of 3-7 nm through transmission electron microscopy (TEM) observation and underwent a slight size increase with the higher gold load level. An overall increase in the absorption intensity, a red shift of absorption peak, together with a comparatively narrower bandwidth could be observed at higher gold concentration within composite films from UV-vis spectra. Wide-angle XRD, TEM, X-ray photoelectron spectroscopy (XPS) and UV-vis spectra characterizations all agreed on the fact that the gold loading level could be controlled by the amount of BPTS in the starting sol for preparing MTFs.  相似文献   

20.
Ordered mesoporous silica nanoparticles with pore diameter of 5 nm were synthesized by modification of the sol‐gel synthesis method. Post‐synthesis two‐step grafting of thermoresponsive poly(N‐isopropylacrylamide) inside the mesopores of the nanoparticles was carried out by distillation–precipitation polymerization of the methacryloxy‐functionalized mesoporous nanoparticles with N‐isopropylacrylamide monomer. A precise control on the quantity of the grafted polymer was achieved by changing the ratio of monomer to methacryloxy‐functionalized nanoparticles. The polymer‐grafted hybrid nanoparticles obtained were fully characterized by infrared spectroscopy, X‐ray diffraction, dynamic light scattering, transmission electron microscopy, thermal, and gas‐volumetric analyses, which clearly showed presence and thermoresponsive behavior of the polymer inside the mesopores with the preservation of the characteristic mesoporous structure of the nanoparticles. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号