首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 0 毫秒
1.
The current study aims at preparing biocompatible hybrid organic–inorganic ruthenium core–shell nanostructures (RuNPs) coated with polyvinylpyrrolidone (PVP) and polyoxyethylene stearate (POES). Thereafter, the core/shell RuNPs are loaded with doxorubicin (to form RuPDox) with a loading efficiency > 60%. RuPDox possesses exceptional stability and pH‐responsive release kinetics with approx. 50% release of doxorubicin at up to 1 h exposure to an acidic endosomal environment. The cytotoxic effects of RuPDox are tested in vitro against breast cancer (MDA‐MB‐231), ovarian cancer (A2780), and neuroblastoma (UKF‐NB‐4) cells. Notably, although RuNPs have slight cytotoxicity only, RuPDox causes a synergistic enhancement of cytotoxicity when compared to free doxorubicin. Significant increase in free radicals formation, enhanced activity of executioner caspases 3/7, and higher expression of p53 and metallothionein is further identified due to the RuPDox treatment. Single‐cell gel electrophoresis reveals no additional contribution of RuNPs to genotoxicity of doxorubicin. Moreover, RuPDox promotes significantly increased stability of doxorubicin in human plasma and pronounced hemocompatibility assayed on human red blood cells. The results imply a high potential of biocompatible hybrid RuNPs with PVP‐POES shell as versatile nanoplatforms to enhance the efficiency of cancer treatment.  相似文献   

2.
Using magnetoelectric nanoparticles (MENs) for targeted drug delivery and on‐demand, field‐controlled release can overcome the control challenges of the conventional delivery approaches. The magnetoelectric effect provides a new way to use an external magnetic field to remotely control the intrinsic electric fields that govern the binding forces between the functionalized surface of the MEN and the drug load. Here, a study is reported in which the composition of the intermediate functionalized layer is tailored to control not only the toxicity of the new nanoparticles but also the threshold magnetic field for the dissociation of the drug from 30‐nm CoFe2O4–BaTiO3 core–shell MENs in a controllably wide field range, from below 10 to over 200 Oe, as required to facilitate superficial, intermediate, and deep‐tissue drug delivery. Paclitaxel is used as a test drug. Specific experiments are described to maintain low toxicity levels and to achieve controllable dissociation of the drug molecules from the MENs' surface at three different subranges—low (<10 Oe), moderate (100 Oe), and high (>200 Oe)—by selecting the following 2‐nm intermediate layers: i) glycerol monooleate (GMO), ii) Tween‐20, and iii) ethyl‐3‐(3‐dimethylaminopropyl)carbodiimide (EDC). Field‐dependent FTIR, absorption spectra, atomic force microscopy, magnetometry analysis, zeta‐potential measurements, and blood circulation experiments are used to study the described functionalization effects.  相似文献   

3.
Eight fluorinated nanoparticles (NPs) are synthesized, loaded with doxorubicin (DOX), and evaluated as theranostic delivery platforms to breast cancer cells. The multifunctional NPs are formed by self‐assembly of either linear or star‐shaped amphiphilic block copolymers, with fluorinated segments incorporated in the hydrophilic corona of the carrier. The sizes of the NPs confirm that small circular NPs are formed. The release kinetics data of the particles reveals clear hydrophobic core dependence, with longer sustained release from particles with larger hydrophobic cores, suggesting that the DOX release from these carriers can be tailored. Viability assays and flow cytometry evaluation of the ratios of apoptosis/necrosis indicate that the materials are non‐toxic to breast cancer cells before DOX loading; however, they are very efficient, similar to free DOX, at killing cancer cells after drug encapsulation. Both flow cytometry and confocal microscopy confirm the cellular uptake of NPs and DOX‐NPs into breast cancer cells, and in vitro 19F‐MRI measurement shows that the fluorinated NPs have strong imaging signals, qualifying them as a potential in vivo contrast agent for 19F‐MRI.  相似文献   

4.
Targeted drug delivery using epidermal growth factor peptide‐targeted gold nanoparticles (EGFpep‐Au NPs) is investigated as a novel approach for delivery of photodynamic therapy (PDT) agents, specifically Pc 4, to cancer. In vitro studies of PDT show that EGFpep‐Au NP‐Pc 4 is twofold better at killing tumor cells than free Pc 4 after increasing localization in early endosomes. In vivo studies show that targeting with EGFpep‐Au NP‐Pc 4 improves accumulation of fluorescence of Pc 4 in subcutaneous tumors by greater than threefold compared with untargeted Au NPs. Targeted drug delivery and treatment success can be imaged via the intrinsic fluorescence of the PDT drug Pc 4. Using Pc 4 fluorescence, it is demonstrated in vivo that EGFpep‐Au NP‐Pc 4 impacts biodistribution of the NPs by decreasing the initial uptake by the reticuloendothelial system (RES) and by increasing the amount of Au NPs circulating in the blood 4 h after IV injection. Interestingly, in vivo PDT with EGFpep‐Au NP‐Pc 4 results in interrupted tumor growth when compared with EGFpep‐Au NP control mice when selectively activated with light. These data demonstrate that EGFpep‐Au NP‐Pc 4 utilizes cancer‐specific biomarkers to improve drug delivery and therapeutic efficacy over untargeted drug delivery.  相似文献   

5.
The fabrication of a mesoporous silica nanoparticle (MSN)?protamine hybrid system (MSN?PRM) is reported that selectively releases drugs in the presence of specific enzyme triggers present in the proximity of cancer cells. The enzyme trigger involved is a protease called trypsin, which is overexpressed in certain specific pathological conditions, such as inflammation and cancer. Overexpression of trypsin is known to be associated with invasion, metastasis, and growth in several cancers, such as leukemia, colon cancer, and colorectal cancer. The current system (MSN–PRM) consists of an MSN support in which mesopores are capped with an FDA‐approved peptide drug protamine, which effectively blocks the outward diffusion of the drug molecules from the mesopores of the MSNs. On exposure to the enzyme trigger, the protamine cap disintegrates, opening up the molecular gates and releasing the entrapped drug molecules. The system exhibits minimal premature release in the absence of the trigger and selectively releases the encapsulated drugs in the presence of the proteases secreted by colorectal cancer cells. The ability of the MSN–PRM particles to deliver anticancer drugs to colorectal cancer cells has also been demonstrated. The hydrophobic drug is released into cancer cells subsequent to disintegration of the protamine cap, resulting in cell death. Drug‐induced cell death in colorectal cancer cells is significantly enhanced when the hydrophobic drug that is known to degrade in aqueous environments is encapsulated in the MSN–PRM system in comparison to the free drug (P < 0.05). The system, which shows good biocompatibility and selective drug release, is a promising platform for cancer specific drug delivery.  相似文献   

6.
Constructing novel multimodal antitumor therapeutic nanoagents has attracted tremendous recent attention. In this work, a new drug‐delivery vehicle based on human‐serum‐albumin (HSA)‐coated Prussian blue nanoparticles (PB NPs) is synthesized. It is demonstrated that doxorubicin (DOX)/HSA is successfully loaded after in situ polymerization of dopamine onto PB NPs, and the PB@PDA/DOX/HSA NPs are highly compatible and stable in various physiological solutions. The NPs possess strong near‐infrared (NIR) absorbance, and excellent capability and stability of photothermal conversion for highly efficient photothermal therapy applications. Furthermore, a bimodal on‐demand drug release sensitively triggered by pH or NIR irradiation has been realized, resulting in a significant chemotherapeutic effect due to the preferential uptake and internalization of the NPs by cancer cells. Importantly, the thermochemotherapy efficacy of the NPs has been examined by a cell viability assay, revealing a remarkably superior synergistic anticancer effect over either monotherapy. Such multifunctional drug‐delivery systems composed of approved materials may have promising biomedical applications for antitumor therapy.  相似文献   

7.
In this paper, the fabrication and characterization of multi‐drug‐loaded microparticles are demonstrated for topical glaucoma therapy. Specifically, latanoprost (“LAT”) and dexamethasone (“DEX”) are loaded in monodisperse microparticles (diameter ≈150 μm) of a biodegradable polymer–poly (lactic‐co‐glycolic) acid (PLGA)—using capillary microfluidics coupled with solvent evaporation. Both individual (LAT in PLGA and DEX in PLGA) and combined (LAT and DEX in PLGA) microparticle formulations are demonstrated. The morphology, size distribution and in vitro release kinetics are studied, and in vitro mucoadhesion of the formulated microparticles is also assessed. In addition, discussion is placed in how precise knowledge of the particle composition enabled by the microfluidic fabrication method and in vitro release rate measurements allow for facile topical formulation design and dose optimization. Such precision‐fabricated, multi‐drug loaded, sustained‐release microparticles are envisioned to serve as a promising platform for topical administration of ocular drugs. This could potentially reduce the frequency of eyedrop‐based drug administration from several times a day to merely once a day (or less), thus greatly facilitating patient compliance and adherence to a strict therapeutic drug regimen.  相似文献   

8.
The use of high‐shear microfluidization as a rapid, reproducible, and high‐yield method to prepare nanoparticles of porous silicon (pSi) with a narrow size distribution is described. Porous films prepared by electrochemical etch of a single‐crystal silicon wafer are removed from the substrate, fragmented, dispersed in an aqueous solution, and then processed with a microfluidizer, which generates high yields (57%) of pSi nanoparticles of narrow size distribution (PDI = 0.263) without a filtration step. Preparation of pSi nanoparticles via microfluidization improves yields (by 2.4‐fold) and particle size uniformity (by 1.8‐fold), and it lowers the total processing time (by 36‐fold) over standard ultrasonication or ball milling methods. The average diameter of the nanoparticles can be adjusted over the range 150–350 nm by appropriate adjustment of processing steps. If the fluid carrier in the microfluidizer contains an oxidant for Si, the resulting pSi particles are prepared with a core–shell structure, in which an elemental Si core is encased in a silicon oxide shell. When an aqueous sodium tetraborate processing solution is used, microfluidization generates photoluminescent core–shell pSi particles with a quantum yield of 19% in a single step in less than 20 min.  相似文献   

9.
10.
Owing to its higher concentration in cancer cells than that in the corresponding normal cells, glutathione (GSH) provides an effective and flexible mechanism to design drug delivery systems. Here a novel GSH‐responsive mesoporous silica nanoparticle (MSN) is reported for controlled drug release. In this system, manganese dioxide (MnO2) nanostructure, formed by the reduction of KMnO4 on the surface of carboxyl‐functionalized MSN can block the pores (MSN@MnO2). By a redox reaction, the capped MnO2 nanostructure can dissociate into Mn2+ in the presence of GSH molecules. The blocked pores are then uncapped, which result in the release of the entrapped drugs. As a proof‐of‐concept, doxorubicin (DOX) as model drug is loaded into MSN@MnO2. DOX‐loaded MSN@MnO2 shows an obvious drug release in 10 × 10?3 m GSH, while no release is observed in the absence of GSH. In vitro studies using human hepatocellular liver carcinoma cell line (HepG2) prove that the DOX‐loaded MSN@MnO2 can entry into HepG2 cells and efficiently release the loaded DOX, leading to higher cytotoxicity than to that of human normal liver cells (L02). It is believed that further developments of this GSH‐responsive drug delivery system will lead to a new generation of nanodevices for intracellular controlled delivery.  相似文献   

11.
Thermo‐chemotherapy combining photothermal therapy (PTT) with chemotherapy has become a potent approach for antitumor treatment. In this study, a multifunctional drug‐delivery nanoplatform based on polyethylene glycol (PEG)‐modified mesoporous silica‐coated bismuth selenide nanoparticles (referred to as Bi2Se3@mSiO2‐PEG NPs) is developed for synergistic PTT and chemotherapy with infrared thermal (IRT) imaging of cancer cells. The product shows no/low cytotoxicity, strong near‐infrared (NIR) optical absorption, high photothermal conversion capacity, and stability. Utilizing the prominent photothermal effect, high‐contrast IRT imaging and efficient photothermal killing effect on cancer cells are achieved upon NIR laser irradiation. Moreover, the successful mesoporous silica coating of the Bi2Se3@mSiO2‐PEG NPs cannot only largely improve the stability but also endow the NPs high drug loading capacity. As a proof‐of‐concept model, doxorubicin (DOX) is successfully loaded into the NPs with rather high loading capacity (≈50.0%) via the nanoprecipitation method. It is found that the DOX‐loaded NPs exhibit a bimodal on‐demand pH‐ and NIR‐responsive drug release property, and can realize effective intracellular drug delivery for chemotherapy. The synergistic thermo‐chemotherapy results in a significantly higher antitumor efficacy than either PTT or chemotherapy alone. The work reveals the great potential of such core–shell NPs as a multifunctional drug‐delivery nanosystem for thermo‐chemotherapy.  相似文献   

12.
13.
Biosafe nanoparticles with strong near‐infrared (NIR) light photothermal conversion effect can bring effective hyperthermia as one of the promising approaches in cancer therapy. In this work, a new facile and green preparation method of polypyrrole (PPy) nanoparticles based on 60Co γ‐ray radiation on a simple air‐saturated strong acidic aqueous solution of pyrrole (pH ≤ 1) is studied. According to the MCAP‐FACSIMILE simulation on the concentrations of the radiolysis products of water at the presence of H+ and O2, the main strong oxidative radiolysis products · OH and H2O2 rapidly induce the polymerization of pyrrole. The size of the prepared PPy nanoparticles is about several tens of nanometers and can be controlled by the pH, the concentration of the stabilizer poly(vinyl alcohol), and the absorbed dose rate (the amount of energy absorbed per unit mass of the irradiated material within per unit of time). The PPy nanoparticles show rapid and remarkable NIR (808 nm) photothermal conversion efficiency up to 40.1% in water. Furthermore, the in vitro and in vivo experiments confirm that the prepared PPy nanoparticles exhibit enough strong NIR photothermal effect in tumor cells (4T1 and HeLa) and show a promising prospect as the NIR photothermal agent for the future cancer therapy.  相似文献   

14.
15.
It is disclosed how the sizes of rod‐shaped paclitaxel‐nanosuspensions (PTX‐Ns) that are less than 500 nm affect their in vitro and in vivo performances. A size reduction from 500 to 160 nm enhances the cellular uptake and subsequent cytotoxicity, due to the participation of caveolae‐mediated endocytosis; moreover, the ability of the PTX‐Ns to penetrate tumors is well correlated with the extent to which the caveolae pathway participates in cellular uptake, as their ability to target caveolae is markedly promoted as their size decreased to 160 nm. Also, the size reduction markedly alters the in vivo performance and tumor targeting. It is disclosed that via enhanced tumor penetration and retention but not simply increased tumor accumulation, size reduction of PTX‐Ns results in significant improvement in antitumor activities. Overall, this study highlights the importance of the size of the PTX‐Ns and the participation of caveolae‐mediated endocytosis in controlling their biological functions and will assist in the design and optimization of new nanosuspension formulations for disease therapy.  相似文献   

16.
17.
A series of Gd3+ doping hollow upconversion nanoparticles NaYF4:Yb,Gd,Tm (h‐UNCP) are prepared successfully. The hollow NaYF4:Yb,Gd,Tm possess excellent upconversion luminescence (UCL) and large longitudinal relativity (r1 = 128.3 mm ?1 s?1), which can be potentially used for UCL/magnetic resonance imaging (MRI) dual mode imaging. On the basis of the optimal h‐UCNP, doxorubicin hydrochloride (DOX) and methotrexate (MTX) are used as drug models to prepare a dual drug carrier. After the encapsulation of DOX on the h‐UCNP, chitosan (CS) is further wrapped and then used to load MTX to obtain a dual drug carrier h‐UCNPs/DOX/CS/MTX. The pH responsive release of DOX and MTX is discussed. The MTX release climbs from 33% to 100% by regulating the pH from 5.8 to 7.4. The DOX release is different at different pH conditions. The synergistic effect of DOX and MTX on the cancer cells is confirmed by cell viability. The h‐UCNPs/DOX/CS/MTX are tracked by cells UCL imaging and vivo MRI imaging. The excellent performance of UCL imaging and positive MRI images demonstrates that h‐UCNPs/DOX/CS/MTX can be used for UCL/MRI dual mode imaging. All the results show the potential application of h‐UCNPs/DOX/CS/MTX in pH responsive release and UCL/MRI dual imaging.  相似文献   

18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号