首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of amphiphilic graft copolymers of poly (vinylidene fluoride‐co‐chlorotrifluoroethylene)‐g‐poly(2‐vinyl pyridine), P (VDF‐co‐CTFE)‐g‐P2VP, with different degrees of P2VP grafting (from 26.3 to 45.6 wt%) was synthesized via one‐pot atom transfer radical polymerization (ATRP). The amphiphilic properties of P (VDF‐co‐CTFE)‐g‐P2VP graft copolymers allowed itself to self‐assemble into nanoscale structures. P (VDF‐co‐CTFE)‐g‐P2VP graft copolymers were introduced into neat P (VDF‐co‐CTFE) as additives to form blending membranes. When two different solvents, N‐methyl‐2‐pyrrolidone (NMP) and dimethylformamide (DMF), were used, specific organized crystalline structures were observed only in the NMP systems. P (VDF‐co‐CTFE)‐g‐P2VP played a pivotal role in controlling the morphology and pore structure of membranes. The water flux of the membranes increased from 57.2 to 310.1 L m?2 h?1 bar?1 with an increase in the PVDF‐co‐CTFE‐g‐P2VP loading (from 0 to 30 wt%) due to increased porosity and hydrophilicity. The flux recovery ratio (FRR) increased from 67.03% to 87.18%, and the irreversible fouling (Rir) decreased from 32.97% to 12.82%. Moreover, the pure gas permeance of the membranes with respect to N2 was as high as 6.2 × 104 GPU (1 GPU = 10–6 cm3[STP]/[s cm2 cmHg]), indicating their possible use as a porous polymer support for gas separation applications.  相似文献   

2.
Sorption and diffusion properties of poly(vinylidene fluoride)‐graft‐poly(styrene sulfonic acid) (PVDF‐g‐PSSA) and Nafion® 117 polymer electrolyte membranes were studied in water/methanol mixtures. The two types of membranes were found to have different sorption properties. The Nafion 117 membrane was found to have a maximum in‐solvent uptake around 0.4 to 0.6 mole fraction of methanol, while the PVDF‐g‐PSSA membranes took up less solvent with increasing methanol concentration. The proton NMR spectra were recorded for membranes immersed in deuterated water/methanol mixtures. The spectra showed that the hydroxyl protons inside the membrane exhibit resonance lines different from the resonance lines of hydroxyl protons in the external solvent. The spectral features of the lines of these internal hydroxyl groups in the membranes were different in the Nafion membrane compared with the PVDF‐g‐PSSA membranes. Diffusion measurements with the pulsed field gradient NMR (PFG‐NMR) method showed that the diffusion coefficient of the internal hydroxyl groups in the solvent immersed Nafion membrane mirrors the changes in the diffusion coefficients of hydroxyl and methyl protons in the external solvent. For the PVDF‐g‐PSSA membranes, a decrease in the diffusion coefficient of the internal hydroxyl protons was seen with increasing methanol concentration. These results indicate that the morphology and chemical structure of the membranes have an effect on their solvent sorption and diffusion characteristics. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3277–3284, 2000  相似文献   

3.
Dispersed solutions of poly(vinylidene fluoride) (PVDF)/polycarbonate (PC) in the mixed solvent of N,N‐dimethylformamide (DMF)/tetrahydrofuran (THF) were used to electrospin in order to discuss the relationship between the properties of the polymer dispersions and the morphology of the obtained ultrafine fibers. With the changes of the mass ratio of PVDF/PC, the relative molecular mass of PVDF, and the volume ratio of DMF/THF, the morphology and the microstructure of the prepared PVDF/PC ultrafine fibers altered in accord with the viscosity, surface tension, and conductivity of the PVDF/PC dispersions. When the PVDF/PC mass ratio varied from 9/1 to 5/5, the ability of the polymer chain entanglement in PVDF/PC dispersion decreased as to the lower relative molecular mass of PC and higher chain rigidity, which lead to the formation of the beaded fibers together with the distinct core/shell structure. Similar phenomenon was also found when the lower molecular mass of PVDF was used instead of a higher one. Though the change of DMF/THF volume ratio did not specifically contribute to the properties of PVDF/PC dispersions, the accelerated evaporation and solubility of the mixed solvent by the THF amount increasing was feasible to generate the uniform fibrous morphology and the distinct core/shell structure. © 2009 Wiley Periodicals, Inc.J Polym Sci Part B: Polym Phys 48: 372–380, 2010  相似文献   

4.
Salt‐containing membranes based on polymethacrylates having poly(ethylene carbonate‐co‐ethylene oxide) side chains, as well as their blends with poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP), have been studied. Self‐supportive ion conductive membranes were prepared by casting films of methacrylate functional poly(ethylene carbonate‐co‐ethylene oxide) macromonomers containing lithium bis(trifluorosulfonyl)imide (LiTFSI) salt, followed by irradiation with UV‐light to polymerize the methacrylate units in situ. Homogenous electrolyte membranes based on the polymerized macromonomers showed a conductivity of 6.3 × 10?6 S cm?1 at 20 °C. The preparation of polymer blends, by the addition of PVDF‐HFP to the electrolytes, was found to greatly improve the mechanical properties. However, the addition led to an increase of the glass transition temperature (Tg) of the ion conductive phase by ~5 °C. The conductivity of the blend membranes was thus lower in relation to the corresponding homogeneous polymer electrolytes, and 2.5 × 10?6 S cm?1 was recorded for a membrane containing 10 wt % PVDF‐HFP at 20 °C. Increasing the salt concentration in the blend membranes was found to increase the Tg of the ion conductive component and decrease the propensity for the crystallization of the PVDF‐HFP component. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 79–90, 2007  相似文献   

5.
The equilibrium phase behavior of water (nonsolvent)‐DMF (solvent)‐PVDF system at 25°C was investigated via both theoretical and experimental approaches. Using binary interaction parameters, χij, obtained previously, the theoretical phase boundaries were computed and were found to match closely the measured binodal and crystallization‐induced gelation data. Membranes were prepared using the isothermal immersion‐precipitation processes in various dope and bath conditions. The formed membranes demonstrated a broad spectrum of morphologies: At one extreme, asymmetric structure was obtained featuring a continuous tight skin and a sublayer composed of parallel macrovoids and cellular pores; at the other limit, skinless microporous membrane was produced with spherical particles packed into a bi‐continuous structure. The crystalline characters of PVDF gels and membranes were examined by small angle light scattering, scanning electron microscopy, and differential scanning calorimetry techniques. In addition, diffusion trajectories and concentration profiles in the membrane solution before precipitation were calculated for the immersion process. These results predicted reasonably the various morphologies observed in the membranes. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2079–2092, 1999  相似文献   

6.
Thermally induced phase separation (TIPS) has been developed to prepare porous membranes. The porous structures are mainly dependent on diluents adopted in the TIPS process. We obtained two typical morphologies of poly(vinylidene fluoride) (PVDF) membranes using cyclohexanone (CO) and propylene carbonate (PC) as diluents, respectively. SEM observation displays that porous spherulites are formed from PVDF/CO system, whereas smooth particles result from PVDF/PC system. The TIPS processes of these two systems have been investigated in detail by optical microscope observation and temperature‐dependent FTIR combined with two‐dimensional infrared correlation analysis. Rapid crystallization of PVDF can be seen around 110 °C in the PVDF/CO system, which is consistent with the results of temperature‐dependent FTIR spectra. The spectral evolution indicates a transform of PVDF from amorphous to α‐phase after 110 °C. The νs(C?O) band at 1712 cm?1 narrows and the νs(C? F) band at 1188 cm?1 shifts to 1192 cm?1 before crystallization, which implies the destruction of interaction between PVDF and CO. In contrast, the PVDF/PC system shows slow crystallization with all‐trans conformation assigned to β‐phase and γ‐phase below 60 °C but no obvious change of polymer?diluent interaction. We propose two mechanisms for the different phase behaviors of PVDF/CO and PVDF/PC systems: a solid?liquid phase separation after destruction of polymer?diluent interaction in the former, and a liquid?liquid phase separation process coupled with rich‐phase crystallization in the later. This work may provide new insight into the relationship among morphologies, crystal forms, and phase separation processes, which will be helpful to adjust membrane structure. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1438–1447  相似文献   

7.
SiO2/polyvinylidene fluoride (PVDF) composite nanofiber‐coated polypropylene (PP) nonwoven membranes were prepared by electrospinning of SiO2/PVDF dispersions onto both sides of PP nonwovens. The goal of this study was to combine the good mechanical strength of PP nonwoven with the excellent electrochemical properties of SiO2/PVDF composite nanofibers to obtain a new high‐performance separator. It was found that the addition of SiO2 nanoparticles played an important role in improving the overall performance of these nanofiber‐coated nonwoven membranes. Among the membranes with various SiO2 contents, 15% SiO2/PVDF composite nanofiber‐coated PP nonwoven membranes provided the highest ionic conductivity of 2.6 × 10?3 S cm?1 after being immersed in a liquid electrolyte, 1 mol L?1 lithium hexafluorophosphate in ethylene carbonate, dimethyl carbonate and diethyl carbonate. Compared with pure PVDF nanofiber‐coated PP nonwoven membranes, SiO2/PVDF composite fiber‐coated PP nonwoven membranes had greater liquid electrolyte uptake, higher electrochemical oxidation limit, and lower interfacial resistance with lithium. SiO2/PVDF composite fiber‐coated PP nonwoven membrane separators were assembled into lithium/lithium iron phosphate cells and demonstrated high cell capacities and good cycling performance at room temperature. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1719–1726  相似文献   

8.
The supramolecular crystal structure in poly(vinylidene fluoride) (PVDF) solution‐cast films is studied through changing crystallization conditions in two solvents of different structures and polarities. The crystalline‐state chain conformations of isothermally solution‐crystallized PVDF in N, N‐dimethylacetamide (DMAc), and cyclohexanone are studied through the specific FTIR absorption bands of α, β, and γ phase crystals. There are no changes in the FTIR spectra of cyclohexanone solution‐crystallized films in the temperature range of 50–120 °C. In the case of DMAc solution‐crystallized films, low temperature crystallization mainly results in formation of trans states (β and γ phases), whereas at higher temperatures gauche states become more populated (α phase). This is due to the variations in solvent polarity and ability to induce a specific conformation in PVDF chains, through the changes in chain coil dimensions. This indicates that in spite of cyclohexanone solutions, the intermolecular interactions between PVDF and DMAc are temperature‐sensitive and more important in stabilizing conformations of PVDF in crystalline phase than temperature dependence of PVDF chain end‐to‐end distance <r2>. The high‐resolution 19F NMR spectroscopy also showed little displacement in PVDF characteristic chemical shifts probably due to changes in PVDF chain conformation resulting from temperature variations. Upon uniaxial stretching of the prepared films under certain conditions, contribution of trans state becomes more prominent, especially for the originally higher α phase‐containing films. Due to formation of some kink bands during film stretching and phase transformation, α phase absorption bands are still present in infrared spectra. Besides, uniaxial stretching greatly enhances piezoelectric properties of the films, maybe due to formation of oriented β phase crystals, which are of more uniform distribution of dipole moments. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3487–3495, 2004  相似文献   

9.
Binary solvent mixtures were routinely used to induce the hierarchical assembly of poly(3‐hexylthiophene) (P3HT) in the liquid phase. This technique has garnered a lot of interest as a route to well‐organized films and composites, but, to date, the impact that the attributes of the liquid‐phase aggregates and solvent mixtures have on the organization of the films have only been partially scrutinized. The molecular weight and concentration dependence of P3HT assembly in three binary solvent mixtures containing chloroform and acetonitrile, n‐hexane, or dichloromethane were studied using ultraviolet/visible absorbance spectroscopy and dynamic light scattering techniques. Films drop cast under slow and rapid evaporation conditions were observed using optical and atomic force microscopy. In general, there is no evidence that the characteristics of the liquid phase P3HT aggregates impact the structures of the films, but films cast from these solvent mixtures under rapid evaporation conditions exhibit an array of disparate morphologies and mesoscale patterning. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 624–638  相似文献   

10.
Polymer‐solvent compound formation, occurring via co‐crystallization of polymer chains and selected small‐molecular species, is demonstrated for the conjugated polymer poly(9,9‐dioctylfluorene) (PFO) and a range of organic solvents. The resulting crystallization and gelation processes in PFO solutions are studied by differential scanning calorimetry, with X‐ray diffraction providing additional information on the resulting microstructure. It is shown that PFO‐solvent compounds comprise an ultra‐regular molecular‐level arrangement of the semiconducting polymer host and small‐molecular solvent guest. Crystals form following adoption of the planar‐zigzag β‐phase chain conformation, which, due to its geometry, creates periodic cavities that accommodate the ordered inclusion of solvent molecules of matching volume. The findings are formalized in terms of nonequilibrium temperature–composition phase diagrams. The potential applications of these compounds and the new functionalities that they might enable are also discussed. © 2015 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1481–1491  相似文献   

11.
This work uses a simple “grafting through” approach in the preparation of anhydrous poly(vinylidene fluoride) (PVDF)‐g‐PVTri polymer electrolyte membranes (PEMs). Alkaline‐treated PVDF was used as a macromolecule in conjunction with vinyltriazole in the graft copolymerization. The obtained polymer was subsequently doped with triflic acid (TA) at different stoichiometric ratios with respect to triazole units and the anhydrous PEMs (PVDF‐g‐PVTri‐(TA)x) were prepared. All samples were characterized by FTIR and 1H NMR. The composition of PVDF‐g‐PVTri was determined by energy dispersive spectroscopy. Thermal properties of the membranes were examined by thermogravimetric analysis and differential scanning calorimetry. The surface roughness and morphology of the membranes were studied using atomic force microscopy, X‐ray diffraction, and scanning electron microscopy. PVDF‐g‐PVTri‐(TA)3 (C3‐TA3) with a degree of grafting of 47.22% showed a maximum proton conductivity of 0.09 S cm?1 at 150 °C and anhydrous conditions. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1885–1897  相似文献   

12.
Poly(vinylidene fluoride‐co‐trifluoroethylene‐co‐chlorotrifluoroethylene) (P(VDF‐co‐TrFE‐co‐CTFE)) with internal double bond has been reported with high dielectric constant and energy density at room temperature, which is expected to serve as a promising dielectric film in high pulse discharge capacitors. An environmentally friendly one‐pot route, including the controllable hydrogenation via Cu(0) mediated single electron transfer radical chain transfer reaction (SET‐CTR) and dehydrochlorination catalyzed with N‐containing reagent, is successfully developed to synthesize P(VDF‐co‐TrFE‐co‐CTFE) containing unsaturation. The resultant polymer was carefully characterized with 1H NMR, 19F NMR, and FTIR. The composition of the resultant copolymer is strongly influenced by reaction conditions, including the reaction temperature, catalyst concentration, the types of ligands and solvents. The kinetics data of the chain transfer and elimination reaction demonstrate their well‐controlled feature of the strategy. By shifting the equilibrium between the CTR and elimination reactions dominated by N‐compounds serving as ligands in SET‐CTR and catalyst in the dehydrochlorination of P(VDF‐co‐CTFE), P(VDF‐co‐TrFE‐co‐CTFE) with tunable TrFE and double‐bond content could be synthesized in this one‐pot route. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3429–3440  相似文献   

13.
The structures of Nafion membranes prepared by solutions casting from low aliphatic alcohols/water mixture solvents and N,N′‐dimethyl formamide (DMF) solvent were investigated using differential scanning calorimeter and small angle X‐ray scattering. The aggregation behavior of Nafion molecules in the casting solutions was also investigated using dynamic light scattering. We show that the morphology of membranes was strongly influenced by the conformations of Nafion molecules in the solutions. In aliphatic alcohol/water mixture solvents, which have a worse compatibility with Nafion backbones, the Nafion molecules aggregate and form fringed rod‐like structures. These primary rod‐like structures then aggregate again through fringed side chains to form secondary ionic aggregations. In DMF solvent, owing to its better compatibility with Nafion backbones, less Nafion molecules aggregate. The high degree of Nafion molecular aggregations in aliphatic alcohol/water mixture solvents leads to a high degree of hydrophobic and hydrophilic phase separation for membranes prepared by casting from Nafion/aliphatic alcohol/water solutions. However, the lower degree of molecular aggregations in DMF solvent results in a lower degree of hydrophobic and hydrophilic phase separation for membranes prepared by casting from Nafion/DMF solution. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3044–3057, 2005  相似文献   

14.
Solution‐crystallization is studied for two polyfluorene polymers possessing different side‐chain structures. Thermal analysis and temperature‐dependent optical spectroscopy are used to clarify the nature of the crystallization process, while X‐ray diffraction and scanning electron microscopy reveal important differences in the resulting microstructures. It is shown that the planar‐zigzag chain conformation termed the β‐phase, which is observed for certain linear‐side‐chain polyfluorenes, is necessary for the formation of so‐called polymer‐solvent compounds for these polymers. Introduction of alternating fluorene repeat units with branched side‐chains prevents formation of the β‐phase conformation and results in non‐solvated, i.e. melt‐crystallization‐type, polymer crystals. Unlike non‐solvated polymer crystals, for which the chain conformation is stabilized by its incorporation into a crystalline lattice, the β‐phase conformation is stabilized by complexation with solvent molecules and, therefore, its formation does not require specific inter‐chain interactions. The presented results clarify the fundamental differences between the β‐phase and other conformational/crystalline forms of polyfluorenes. © 2015 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1492–1506  相似文献   

15.
《先进技术聚合物》2018,29(1):143-150
Harvesting energy from the ambient mechanical energy by using flexible piezoelectric nanogenerator is a revolutionary step toward achieving reliable and green energy source. Polyvinylidene fluoride (PVDF), a flexible polymer, can be a potential candidate for the nanogenerator if its piezoelectric property can be enhanced. In the present work, we have shown that the polar crystalline β‐phase of PVDF, which is responsible for the piezoelectric property, can be enhanced from 48.2% to 76.1% just by adding ZnO nanorods into the PVDF matrix without any mechanical or electrical treatment. A systematic investigation of PVDF‐ZnO nanocomposite films by using X‐ray diffractometer, Fourier transform infrared spectroscopy, and polarization‐electric field loop measurements supports the enhancement of β‐phase in the flexible nanocomposite polymer films. The piezoelectric constant (d33) of the PVDF‐ZnO (15 wt%) film is found to be maximum of approximately −1.17 pC/N. Nanogenerators have been fabricated by using these nanocomposite films, and the piezoresponse of PVDF is found to enhance after ZnO loading. A maximum open‐circuit voltage ~1.81 V and short‐circuit current of 0.57 μA are obtained for 15 wt% ZnO‐loaded PVDF nanocomposite film. The maximum instantaneous output power density is obtained as 0.21 μW/cm2 with the load resistance of 7 MΩ, which makes it feasible for the use of energy harvesting that can be integrated to use for driving small‐scale electronic devices. This enhanced piezoresponse of the PVDF‐ZnO nanocomposite film‐based nanogenerators attributed to the enhancement of electroactive β‐phase and enhanced d33 value in PVDF with the addition of ZnO nanorods.  相似文献   

16.
Transparent plasticized gels with good mechanical, optical, and dielectric properties have important applications in various fields. We prepared a new gel using a poly(butylene terephthalate)‐co‐poly(alkylene glycol terephthalate) (PBT‐co‐PAGT) copolymer and a plasticizer, dibutyl adipate (DBA). This method improved the polymer crystallinity, and suppressed particle formation in cast‐films when the polymer was dissolved in 1,1,1,3,3,3‐hexafluoro‐2‐propanol, followed by solvent evaporation, and enabled uniform swelling of the polymer network by the plasticizer to form a transparent and flexible gel. The dielectric constants of the developed PBT‐co‐PAGT/DBA gels are much higher than those of PBT‐co‐PAGT films at low frequency. We believe that these PBT‐co‐PAGT/DBA gels could be used as photovoltaic, dielectric, and actuator materials. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 829–832  相似文献   

17.
An amphiphilic comb polymer consisting of poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) [P(VDF‐co‐CTFE)] main chains and poly(oxyethylene methacrylate) (POEM) side chains was synthesized using direct initiation of the chlorine atoms in CTFE units through atom transfer radical polymerization, as confirmed by 1H NMR and FTIR spectroscopy. The P(VDF‐co‐CTFE)‐g‐POEM comb polymer was introduced as an additive to prepare poly(vinylidene fluoride) antifouling ultrafiltration membranes. As the contents of comb polymer increased, the mechanical properties of membranes slightly decreased due to the decreased crystallinity of the membranes, as revealed by universal testing machine and X‐ray diffraction. However, water contact angle measurement and X‐ray photoelectron spectroscopy showed that the hydrophilic POEM segments spontaneously segregated on the membrane surfaces. As a result, the antifouling property of the membranes containing P(VDF‐co‐CTFE)‐g‐POEM comb polymer was considerably improved with a slight change of water flux. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 183–189, 2010  相似文献   

18.
This work investigates the effects of polymer solids content and macromolecular structure on the high temperature creep behavior of polybenzimidazole (PBI) gel membranes imbibed with phosphoric acid (PA) after preparation via a polyphosphoric acid (PPA) mediated sol‐gel process Low‐solids, highly acid‐doped PBI membranes demonstrate outstanding fuel cell performance under anhydrous, ambient pressure, and high temperature (120–200 °C) operating conditions. However, PBI membranes are susceptible to creep under compressive loads at elevated temperatures, so their long‐term mechanical durability is a major concern. Here, we report results for the creep behavior of PBI membranes subject to compression at 180 °C. For para‐ and meta‐PBI homopolymers, increasing polymer solids content results in lower creep compliance and higher extensional viscosity, which may be rationalized by increasing chain density in the sol‐gel network. Comparing various homo‐ and copolymers at similar solids loading, differences in creep behavior may be rationalized in terms of chain–chain and chain‐solvent interactions that control macromolecular solubility and stiffness in the PA solvent. The results demonstrate the feasibility of improving the mechanical properties of PA‐doped PBI membranes by control of polymer solids content and rational design of PBI macromolecular structure. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1527–1538  相似文献   

19.
《先进技术聚合物》2018,29(1):130-142
The possibility of developing low‐cost commercial grafted and sulfonated Poly(vinylidene fluoride) (PVDF‐g‐PSSA) membranes as proton exchange membranes for fuel cell applications have been investigated. PVDF‐g‐PSSA membranes were systematically prepared and examined with the focus of understanding how the polymer microstructure (degree of grafting and sulfonation, ion‐exchange capacity, etc) affects their methanol permeability, water uptake, and proton conductivity. Fourier transform infrared spectroscopy was used to characterize the changes of the membrane's microstructure after grafting and sulfonation. The results showed that the PVDF‐g‐PSSA membranes exhibited good thermal stability and lower methanol permeability. The proton conductivity of PVDF‐g‐PSSA membranes was also measured by the electrochemical impedance spectroscopy method. It was found that the proton conductivity of PVDF‐g‐PSSA membranes depends on the degree of sulfonation. All the sulfonated membranes show high proton conductivity at 92°C, in the range of 27 to 235 mScm−1, which is much higher than that of Nafion212 (102 mScm−1 at 80°C). The results indicated that the PVDF‐g‐PSSA membranes are particularly promising membranes to be used as polymer electrolyte membranes due to their excellent stability, low methanol permeability, and high proton conductivity.  相似文献   

20.
Simple self‐assembly techniques to fabricate non‐spherical polymer particles, where surface composition and shape can be tuned through temperature and the choice of non‐solvents was developed. A series of amphiphilic polystyrene‐b‐poly(2‐ethyl‐2‐oxazoline) block copolymers were prepared and through solvent exchange techniques using varying non‐solvent composition a range of non‐spherical particles were formed. Faceted phase separated particles approximately 300 nm in diameter were obtained when self‐assembled from tetrahydrofuran (THF) into water compared with unique large multivesicular particles of 1200 nm size being obtained when assembled from THF into ethanol (EtOH). A range of intermediate structures were also prepared from a three part solvent system THF/water/EtOH. These techniques present new tools to engineer the self‐assembly of non‐spherical polymer particles. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 750–757  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号