首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study a series of hyperbranched modified shape‐memory polymers were subjected to constrained shape recoveries in order to determine their potential use as thermomechanical actuators. Materials were synthesized from a diglycidyl ether of bisphenol A as base epoxy and a polyetheramine and a commercial hyperbranched poly(ethyleneimine) as crosslinker agents. Hyperbranched polymers within the structure of the shape‐memory epoxy polymers led to a more heterogeneous network that can substantially modify mechanical properties. Thermomechanical and mechanical properties were analyzed and discussed in terms of the content of hyperbranched polymer. Shape‐memory effect was analyzed under fully and partially constrained conditions. When shape recovery was carried out with fixed strain a recovery stress was obtained whereas when it was carried out with a constraining stress the material performs mechanical work. Tensile tests at TgE′ showed excellent values of stress and strain at break (up to 15 MPa and almost 60%, respectively). Constrained recovery performances revealed rapid recovery stress generation and unusually high recovery stresses (up to 7 MPa) and extremely high work densities (up to 750 kJ/m3). The network structure of shape‐memory polymers was found to be a key factor for actuator‐like applications. Results confirm that hyperbranched modified‐epoxy shape memory polymers are good candidates for actuator‐like shape‐memory applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1002–1013  相似文献   

2.
A new type of poly(methyl acrylate)‐co‐(acrylic acid) (PMA‐AA) networks obtained by combining hydrogen bonding with controlled crosslinking exhibit full and rapid shape‐memory recovery. The structure, thermal properties, dynamical mechanical properties and shape‐memory effects of these networks were presented. High modulus ratios were achieved for the series of PMA‐AA networks based on intense self‐complementary hydrogen bonding in poly(acrylic acid) (PAA) segments. This lead to excellent shape‐memory effects with strain‐recovery ratio above 99%. Meanwhile, faster recovery speed was achieved by the synergistic effect of hydrogen bonding and controlled crosslinking compared to the linear PMA‐AA copolymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1241–1245, 2011  相似文献   

3.
In this work, poly(2‐ethyl‐2‐oxazoline) (PEtOx) is crosslinked to realize a moisture‐ and thermo‐responsive shape‐memory polymer. The obtained PEtOx networks exhibit excellent shape‐memory properties with storable strains of up to 650% and recovery values of 100% over at least 10 shape‐memory cycles. The trigger temperature (Ttrig) of 68 °C of a PEtOx network at a relative humidity (RH) of 0% decreases with increasing moisture and equals room temperature at an RH of 40%. Thus, programmed PEtOx networks trigger sensitively on a certain temperature/moisture combination and, further, can be programmed as well as triggered at room temperature exclusively by varying humidity. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1053–1061  相似文献   

4.
The purpose of this study was to develop a degradable thermoset shape‐memory polymer from poly(β‐amino ester) (PBAE) networks. PBAE was chosen to be the crosslinker as it is biodegradable and has been projected as a potential material for biomedical applications. The low glass transition temperature of PBAE was increased to a biomedically relevant range using methyl methacrylate and methyl acrylate as the linear chain builders. The thermo‐mechanical properties of the networks were tailored such that they exhibited onset of glass transition temperature in between the room temperature (22 °C) and the body temperature (37 °C). Free‐strain recovery tests under heating and isothermal conditions were performed to quantify shape‐memory behavior. Testing showed that sampled programmed at 10 °C initiated deformation recovery at a lower temperature and a faster rate as compared to programming at 60 °C. Higher thermal conductivity of water enabled the samples to recover faster in water than in air. Samples with higher PBAE crosslinking densities exhibited higher normalized mass loss under regular and accelerated conditions. The amount of water absorption in the networks also increased with the crosslinker concentration independent of the testing conditions. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

5.
A series of blue light‐emitting hyperbranched polymers comprising poly(fluorene‐co‐dibenzothiophene‐S,S‐dioxide) as the branch and benzene, triphenylamine, or triphenyltriazine as the core were synthesized by an “A2 + A2' + B3” approach of Suzuki polymerization, respectively. All resulted copolymers exhibited quite comparable thermal properties with the glass transition temperatures in the range of 59–68 °C and relatively high decomposition temperatures over 420 °C. Photoluminescent spectra exhibited slight variation with the molar ratio of the dibenzothiophene‐S,S‐dioxide unit and the size of the core units. Polymer light‐emitting devices demonstrated blue emission with excellent stability of electroluminescence. Copolymers based on smaller core units of benzene and triphenylamine exhibited enhanced device performances regarding to that of triphenyltriazine. With the device configuration of ITO/PEDOT:PSS/polymer/CsF/Al, a maximum luminous efficiency of 4.5 cd A?1 was obtained with Commission Internationale de L'.Eclairage (CIE) coordinates of (0.16, 0.19) for the copolymer PFSO15B. These results indicated that hyperbranched structure can be a promising strategy to attain spectrally stable blue‐light‐emitting polymers with high efficiency. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1043–1051  相似文献   

6.
Tannic‐acid‐based low volatile organic compound‐containing waterborne hyperbranched polyurethane was prepared. In order to improve the performance, it was modified in an aqueous medium using a glycerol‐based hyperbranched epoxy and vegetable‐oil‐based poly(amido amine) at different wt%. The combined system was cross‐linked by heating at 100°C for 45 min. Fourier transform infrared spectroscopy and swelling study were used to confirm the curing. A dose‐dependent improvement of properties was witnessed for the thermoset. Thermoset with 30 wt% epoxy showed excellent improvements in mechanical properties like tensile strength (~3.4 fold), scratch hardness (~2 fold), impact resistance (~1.3 fold), and toughness (~1.7 fold). Thermogravimetric analysis revealed enhancement of thermal properties (maximum 70°C increment of degradation temperature and 8°C increment of Tg). The modified system showed better chemical and water resistance compared with the neat polyurethane. Biodegradation study was carried out by broth culture method using Pseudomonas aeruginosa as the test organism. An adequate biodegradation was witnessed, as evidenced by weight loss profile, bacterial growth curve, and scanning electron microscope images. The work showed the way to develop environmentally benign waterborne polyurethane as a high‐performance material by incorporating a reactive modifier into the polymer network. Use of benign solvent and bio‐based materials as well as profound biodegradability justified eco‐friendliness and sustainability of the modified system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Polymer networks showing a thermally induced shape‐memory effect were prepared through the crosslinking of oligo(?‐caprolactone)dimethacrylates under photocuring with or without an initiator. The influence of the molecular weight of the oligo(?‐caprolactone)dimethacrylates and the initiator concentration on the macroscopic properties of the polymer networks was investigated. The isothermal and nonisothermal crystallization behavior of the polymer networks was evaluated as a basic principle of the functionalization process. Shape‐memory properties such as the strain fixity and strain recovery rate were quantified with cyclic thermomechanical tensile experiments for different maximum elongations. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1369–1381, 2005  相似文献   

8.
Poly(ε‐caprolactone) (PCL) with a pendent coumarin group was prepared by solution polycondensation from 7‐(3,5‐dicarboxyphenyl) carbonylmethoxycoumarin dichloride and α, ω‐dihydroxy terminated poly(ε‐caprolactone) with molecular weights of 1250, 3000, and 10,000 g/mol. These photosensitive polymers underwent a rapid reversible photocrosslinking upon exposure to irradiation with alternating wavelengths (>280/254 nm) without a photoinitiator. The thermal and mechanical properties of the photocrosslinked films were examined by means of differential scanning calorimetry and stress–strain measurements. The crosslinked films exhibited elastic properties above the melting temperature of the PCL segment along with significant decrease in the ultimate tensile strength and Young's modulus. Shape‐memory properties such as strain fixity ratio (Rf) and strain recovery ratio (Rr) were determined by means of a cyclic thermomechanical tensile experiments under varying maximum strains (εm = 100, 300, and 500%). The crosslinked ICM/PCL‐3000 and ‐10,000 films exhibited the excellent shape‐memory properties in which both Rf and Rr values were 88–100% for tensile strain of 100–500%; after the deformation, the films recovered their permanent shapes instantaneously. In vitro degradation was performed in a phosphate buffer saline (pH 7.2) at 37 °C with or without the presence of Pseudomonas cepacia lipase. The presence of the pendent coumarin group and the crosslinking of the polymers pronouncedly decreased the degradation rate. The crosslinked biodegradable PCL showing a good shape‐memory property is promising as a new material for biomedical applications. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2422–2433, 2009  相似文献   

9.
The use of commercially available hyperbranched poly(ethyleneimine)s (Lupasol?, BASF) as polymeric modifiers in diglycidyl ether of bisphenol A thermosetting formulations using 1‐methylimidazole (MI) as anionic initiator has been studied. Poly(ethyleneimine)s can get incorporated into the network structure by condensation of amine and epoxy groups. The excess, over‐stoichiometric epoxy groups can undergo anionic homopolymerization initiated by MI. The thermal, dynamomechanical, and mechanical properties of the resulting materials have been determined using DSC, thermomechanical analysis (TMA), dynamomechanical analysis (DMA), and mechanical testing. The effect of the different amine modifiers on the MI networks, determined by their structure, is complex. Low initiator content and high molecular weight modifiers create significant mobility restrictions, which have a strong effect on the glass transition temperature and the apparent crosslinking density of the cured materials. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

10.
Covalently crosslinked polyurethane/urea polymers were synthesized using diamine monomers modified with pendant glucose groups and 2,4‐toluene diisocyanate, poly(ethylene glycol) (PEG), and 1,1,1‐tris(hydroxymethyl)ethane (triol) comonomers. The polymers showed shape memory behavior with a switching temperature dependent on the glass transition temperature. The glass transition temperature is tuned by varying the mole ratio between the glucose‐diamine and PEG used in the polymerization. Increasing PEG content resulted in decreasing glass transition temperature, and a glass transition temperature of 39 °C, close to physiological temperatures, was obtained. The fixed shape showed gradual shape recovery behavior, but a fixity of 70% was achieved when the material was stored at 25 °C. The polymer recovered to the permanent shape when heated to 50 °C. Finally, the surface of a film of the polymer can be sulfated to achieve increased blood‐compatibility without sacrificing the shape memory properties. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2252–2257  相似文献   

11.
Shape memory properties of two thermoplastic multiblock copolymers composed of poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG) having different PEG‐segment lengths of 6 and 11 kDa were studied. The performance as a shape memory polymer at high strain level (600%) and its interrelations with shape‐programming conditions, molecular orientation, and microstructural changes are elucidated. A significant contribution of strain‐induced crystallization of PLA segments to the improvement of temporary shape fixation was evidenced upon increasing draw ratio and/or shape‐holding duration as well as programming temperature (within certain range) without largely sacrificing the shape recoverability. Series of microstructural characterizations reveal the occurrence of fibrillar‐to‐lamellar transformation upon shape recovery (at 60 °C) of the samples programmed at 40 °C, generating shish–kebab crystalline morphology. Such phenomenon is responsible for the high‐strain shape memory effect of these materials. The unprecedented formation of shish–kebab structure at such relatively low temperature (instead of the melting temperature range) in solid state observed in these copolymers as well as their high‐strain shape memory functionality would bestow the promising future for their practicability in diverse areas. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 241–256  相似文献   

12.
A methacrylate‐based crosslinking hyperbranced polymers have been synthesized through initiator‐fragment incorporation radical polymerization and used for the temperature stable electro‐optic (EO) polymer application. This polymer consists of methyl methacrylate, 2‐metacryloxyethyl isocyanate, and ethylene glycol dimethacrylate (EGDMA) monomers. The use of EGDMA as a bifunctional unit resulted in the solvent‐soluble crosslinking hyperbranched chain, so that the EO polymer enhanced glass transition temperatures. A phenyl vinylene thiophene vinylene bridge nonlinear optical chromophore was attached to the polymer backbone as the side‐chain by a post‐functionalization reaction. The loading concentration of the chromophore was varied between 30 and 50 wt % by simply changing the mixing ratio of the precursor polymer to the chromophore. The synthesized EO polymers produced optical quality films with a light propagation loss of 0.61 dB/cm in a slab waveguide at 1.31 μm. The electrically poled film had an EO coefficient (r33) of 139 pm/V at 1.31 μm. The EO crosslinking hyperbranced polymer had a high‐glass transition temperature of 170 °C, and exhibited excellent temporal stability of the EO activity at 85 °C for 500 h. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
Novel AB2‐type monomers such as 3,5‐bis(4‐methylolphenoxy)benzoic acid ( monomer 1 ), methyl 3,5‐bis(4‐methylolphenoxy) benzoate ( monomer 2 ), and 3,5‐bis(4‐methylolphenoxy)benzoyl chloride ( monomer 3 ) were synthesized. Solution polymerization and melt self‐polycondensation of these monomers yielded hydroxyl‐terminated hyperbranched aromatic poly(ether‐ester)s. The structure of these polymers was established using FTIR and 1H NMR spectroscopy. The molecular weights (Mw) of the polymers were found to vary from 2.0 × 103 to 1.49 × 104 depending on the polymerization techniques and the experimental conditions used. Suitable model compounds that mimic exactly the dendritic, linear, and terminal units present in the hyperbranched polymer were synthesized for the calculation of degree of branching (DB) and the values ranged from 52 to 93%. The thermal stability of the polymers was evaluated by thermogravimetric analysis, which showed no virtual weight loss up to 200 °C. The inherent viscosities of the polymers in DMF ranged from 0.010 to 0.120 dL/g. End‐group modification of the hyperbranched polymer was carried out with phenyl isocyanate, 4‐(decyloxy)benzoic acid and methyl red dye. The end‐capping groups were found to change the thermal properties of the polymers such as Tg. The optical properties of hyperbranched polymer and the dye‐capped hyperbranched polymer were investigated using ultraviolet‐absorption and fluorescence spectroscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5414–5430, 2008  相似文献   

14.
A series of shape memory polyurethanes were synthesized from poly(tetramethylene glycol), 4,4‐methylene diphenyl diisocyanate, and 1,3‐butanediol. The prepolymers with different molecular weights (Mc) were capped with 2‐hydroxyl ethylacrylate or 3‐aminopropyltriethoxysilane (APTES) and crosslinked by UV curing or a sol–gel reaction. Variations of the crosslinker functionality (f), subchain density (N), and hard segment content (HSC) produced systematic variations of the glass transition temperature (6–45 °C), accompanied by changes in the mechanical, dynamic mechanical and shape memory properties. More than 95% of shape fixity and 98% of shape recovery up to the fourth cycles were obtained with APTES crosslinked 3000Mc with 30% of HSC. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1473–1479  相似文献   

15.
(2‐Bromo‐n‐nonan‐1‐oxycarbonyl)ethyl acrylate was synthesized as an inimer for self‐condensing vinyl polymerization (SCVP) to produce hyperbranched poly(n‐nonyl acrylate), either as a homopolymer or as a copolymer with n‐nonyl acrylate. The inimer was homopolymerized and copolymerized by atom transfer radical polymerization (ATRP) and activator generated by electron transfer ATRP to produce soluble polymers with broad polydispersities (up to ? = 9.91), which is characteristic of hyperbranched polymers produced by SCVP. The resulting hyperbranched (co)polymers were crosslinked by atom transfer radical coupling in both one‐pot and two‐step procedures. The radical–radical crosslinking reaction is extremely efficient, resulting in hard plastic particles from the homopolymer of (2‐bromo‐n‐nonan‐1‐oxycarbonyl)ethyl acrylate synthesized in bulk. Crosslinked organogels that swell in tetrahydrofuran were formed when the rate of crosslinking decreased using acetonitrile solutions. Dynamic shear and stress relaxation experiments demonstrated that the dry network behaves as a covalently crosslinked soft gel, with a glass transition at ?50 °C according to differential scanning calorimetry. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2399–2410  相似文献   

16.
In this work, two kinds of high temperature shape memory copolyimides were prepared and the shape memory cycles induced structural evolution of macromolecular chains was investigated in detail. The glass transition temperature (Tg) of poly(benzoxazole‐co‐imide) (PI1) and poly(benzimidazole‐co‐imide) (PI2) are 280 °C and 355 °C, respectively. The results show that PI1 could keep stable macromolecular chain structure under shape memory cycles and exhibit outstanding shape memory performance (Rf > 98%, Rr > 97%) under different stretch condition. Whereas, shape memory cycles induced orientation with more ordered macromolecular chains packing is formed for PI2 after several thermal mechanical cycles, which strongly affect physical crosslinking points, thermal mechanical properties as well as shape memory behaviors. The study on macroscopic property and microscopic structure evolution will promote a better understanding of the shape memory effect of polyimides and accelerate development of high performance polyimides for shape memory applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3858–3867  相似文献   

17.
Composites with excellent water‐induced shape‐memory effects (SMEs) were successfully synthesized by first using clay as the SME‐activating phase and thermoplastic polyurethane (TPU) as the matrix. Naturally abundant clay was grafted with poly(methacrylic acid) (PMAA) to improve particle interactions, which allowed for the formation of strong percolation networks in the composites, determined by swelling tests and dynamic mechanical analysis in combination with theoretical modeling. This led to significant improvements of the polymer modulus and high water absorptions, causing reversible modulus changes of up to 30 times from the wet to the dry condition. The results from cyclic wetting‐drying‐stretching tests showed the TPU–clay composite containing 10.4 vol % PMAA‐grafted clay exhibited the best SMEs among the composites investigated, with the shape fixity and shape recovery ratios being 82% and 91%, respectively. Besides SMEs, these new polymer–clay composites were also pH‐sensitive and mechanically adaptive upon exposure to water. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1513–1522  相似文献   

18.
We report the synthesis and gradient stimuli‐responsive properties of cyclodextrin‐overhanging hyperbranched core‐double‐shell miktoarm architectures. A ionic hyperbranched poly(β‐cyclodextrin) (β‐CD) core was firstly synthesized via a convenient “A2+B3” approach. Double‐layered shell architectures, composed of poly(N‐isopropyl acrylamide) (PNIPAm) and poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA) miktoarms as the outermost shell linked to poly(N,N‐diethylaminoethyl methacrylate) (PDEAEMA) homoarms which form the inner shell, were obtained by a sequential atom transfer radical polymerization (ATRP) and parallel click chemistry from the modified hyperbranched poly(β‐CD) macroinitiator. The combined characterization by 1H NMR, 13C NMR, 1H‐29Si heteronuclear multiple‐bond correlation (HMBC), FTIR and size exclusion chromatography/multiangle laser light scattering (SEC/MALLS) confirms the remarkable hyperbranched poly(β‐CD) core and double‐shell miktoarm architectures. The gradient triple‐stimuli‐responsive properties of hyperbranched core‐double‐shell miktoarm architectures and the corresponding mechanisms were investigated by UV–vis spectrophotometer and dynamic light scattering (DLS). Results show that this polymer possesses three‐stage phase transition behaviors. The first‐stage phase transition comes from the deprotonation of PDEAEMA segments at pH 9–10 aqueous solution under room temperature. The confined coil‐globule conformation transition of PNIPAm and PDMAEMA arms gives rise to the second‐stage hysteretic cophase transition between 38 and 44 °C at pH 10. The third‐stage phase transition occurs above 44 °C at pH = 10 attributed to the confined secondary conformation transition of partial PDMAEMA segments. This cyclodextrin‐overhanging hyperbranched core‐double‐shell miktoarm architectures are expected to solve the problems of inadequate functionalities from core layer and lacking multiresponsiveness for shell layers existing in the dendritic core‐multishell architectures. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
The cure behavior and properties of oligomeric bisphenol A‐based PEEK‐like phthalonitrile (PN) are thoroughly examined in this article. The resin is easily processed from the melt at a relatively low temperature (150–200 °C) and the monomer cure occurs in a controlled manner as a function of the amine content and processing thermal conditions. Dynamic mechanical measurements and thermogravimetric analysis show that the polymer properties improve as the maximum PN postcure temperature is increased to 415 °C. The effects of the amine and polymer postcure conditions on the flexural and tensile properties of the PN polymer are investigated. The mechanical properties of the polymer are maximized after postcuring to moderate temperatures (330–350 °C). The polymer exhibits an average flexural strength and tensile strength at break of 117 and 71 MPa, respectively. After oxidative aging at 302 °C for 100 h, the polymer retains excellent mechanical properties. The average flexural and tensile strength retention of the polymers are 81 and 75%, respectively. Microscale calorimetric measurements reveal that the flammability parameters of the oligomeric PN are low compared to other thermosets. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3769–3777  相似文献   

20.
The anionic ring‐opening polymerization of oxetanes containing hydroxyl groups was carried out with potassium tert‐butoxide as an initiator in the presence of 18‐crown‐6‐ether in N‐methylpyrrolidinone at 180 °C; it yielded corresponding multifunctional hyperbranched polymers: poly(3‐ethyl‐3‐hydroxymethyloxetane)s, with number‐average molecular weights of 2200–4100 in 83–95% yields, and poly(3‐methyl‐3‐hydroxymethyloxetane)s, with number‐average molecular weights of 4600–5200 in 70–95% yields. The synthesized poly(3‐ethyl‐3‐hydroxymethyloxetane)s and poly(3‐methyl‐3‐hydroxymethyloxetane)s were hyperbranched polyethers containing an oxetane moiety and many hydroxy groups at the ends. The postpolymerization of poly(3‐ethyl‐3‐hydroxymethyloxetane)s was performed in the presence of potassium tert‐butoxide and 18‐crown‐6‐ether in N‐methylpyrrolidinone at 180 °C; it yielded corresponding polymers with higher molecular weights in good yields. The cationic polymerization of poly(3‐ethyl‐3‐hydroxymethyloxetane) derivatives was carried out with boron trifluoride etherate as an initiator and was followed by alkaline hydrolysis; this yielded a new branched polymer, a poly(hyperbranched polyether), with many pendant hydroxy groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3739–3750, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号