首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Starting from the pyrylium salt and following a facile synthetic route, we synthesized and polymerized 4,4″‐diiodo‐2′,6′‐di[4‐(2′‐ethylhexyl)oxy]phenyl‐p‐terphenyl with p‐divinylbenzene or p‐diethynylbenzene. The resulting polymers had moderate molecular weights, were amorphous, and dissolved in tetrahydrofuran and chloroform, with glass‐transition temperatures of 120–131 °C. The polymers behaved as violet‐blue‐emitting materials with photoluminescence maxima around 420 and 450 nm in solution and in thin films, respectively. They possessed well‐defined chromophores resulting from steric interactions in the polymer chain. The photoluminescence quantum yields were up to 0.29. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2591–2600, 2002  相似文献   

2.
The copolymerization of N‐phenyl maleimide and p‐chloromethyl styrene via reversible addition–fragmentation chain transfer (RAFT) process with AIBN as initiator and 2‐(ethoxycarbonyl)prop‐2‐yl dithiobenzoate as RAFT agent produced copolymers with alternating structure, controlled molecular weights, and narrow molecular weight distributions. Using poly(N‐phenyl maleimide‐altp‐chloromethyl styrene) as the macroinitiator for atom transfer radical polymerization of styrene in the presence of CuCl/2,2′‐bipyridine, well‐defined comb‐like polymers with one graft chain for every two monomer units of backbone polymer were obtained. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2069–2075, 2006  相似文献   

3.
Three series of poly(phenylene vinylene) (PPV) derivatives containing hole‐transporting triphenylamine derivatives [N‐(4‐octoxylphenyl)diphenylamine, N,N′‐di(4‐octyloxylphenyl)‐N,N′‐diphenyl‐1,4‐phenylenediamine, and N,N′‐di(4‐octoxylphenyl)‐N,N′‐diphenylbenzidine] (donor) and electron‐transporting oxadiazole unit (2,5‐diphenyl‐1,3,4‐oxadiazole) (acceptor) in the main chain were synthesized by improved Wittig copolymerization. The resulting donor–acceptor (D‐A) polymers are readily soluble in common organic solvents, such as chloroform, dichloroethane, THF, and toluene. The polymers containing oxadiazole group exhibit good thermal stability with 5% weight loss above 400 °C. The intramolecular charge‐transfer was observed in these D‐A polymers. In comparison with corresponding polymers without oxadiazole unit, the single‐layer devices based on the D‐A polymers showed much improved electroluminescent properties, because of the balanced charge injection and transport. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1566–1576, 2008  相似文献   

4.
Nonlinear optical (NLO) rigid main‐chain polyesters containing azobenzene mesogens with high thermal and temporal stabilities were synthesized from derivatives of hydroxyphenylazobenzoic acid. The NLO properties of the homopolymer, poly[4‐(4‐hydroxy‐3‐methyl phenyl)azo]benzoic acid, and copolymers of 4‐[(4‐hydroxy‐3‐methylphenyl)azo]benzoic acid, 4‐[(4‐hydroxy‐2‐methylphenyl)azo]benzoic acid, and 4‐[(4‐hydroxy‐2‐pentadecyl phenyl)azo]benzoic acid (PSCpHBA) with p‐HBA were measured by the Maker fringe technique. The thermal and liquid‐crystalline (LC) phase behaviors of the polymers were examined by differential scanning calorimetry, a thermal‐stimulated polarization current, and polarized light microscopy. The polymers except PSCpHBA exhibited nematic‐threaded and Schlieren textures. The LC orientations give rise to an enhanced NLO response. The polymers had high thermal and temporal stabilities for second‐harmonic generation activity because of their rigid aromatic backbone. This study suggests that the rigid aromatic main chain exhibiting an LC phase is a promising simple method to synthesize highly stable NLO polymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1527–1535, 2003  相似文献   

5.
A series of polythiophenes doped with dithieno[3,2‐b:2′,3′‐d]phosphole units at varying levels (0–17%) were synthesized and characterized. Polymer work up provided two series of polymers from chloroform (C) and hexanes (H) for each doping level, respectively. Systematic structure–property studies revealed that the C‐series polymers generally had higher molecular weights than the H‐series, but also slightly higher relative dithienophosphole concentrations, both having a significant impact on the photophysical and electrochemical properties of the polymers. Furthermore, the presence of the dithienophosphole units also stabilizes the LUMO levels, whereas the HOMO levels remain dominated by the thiophene units, resulting in desirable electronics for an interaction with acceptor materials, such as 1‐(3‐methoxycarbonyl)propyl‐1‐phenyl[6,6]C61. Importantly, increasing amount of dithienophosphole doping results in increased conductivities for the polymers in their oxidized state, while concurrently significantly stabilizing the neutral polythiophenes toward oxidation under environmental conditions. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
A new bis(ether anhydride), 3,3′,5,5′‐tetramethyl‐2,2‐bis[4‐(4‐dicarboxyphenoxy)phenyl]propane dianhydride ( 3 ), was prepared in three steps: the nitro displacement of 4‐nitrophthalonitrile with 2,2‐bis(4‐hydroxy‐3,5‐dimethylphenyl)propane, the alkaline hydrolysis of the intermediate bis(ether dinitrile), and the subsequent dehydration of the resulting bis(ether diacid). A series of new highly soluble poly(ether imide)s with tetramethyl and isopropylidene groups were prepared from the bis(ether anhydride) 3 with various diamines by a conventional two‐stage synthesis including polyaddition and chemical cyclodehydration. The resulting poly(ether imide)s had inherent viscosities of 0.54–0.73 dL g?1. Gel permeation chromatography measurements revealed that the polymers had number‐average and weight‐average molecular weights of up to 54,000 and 124,000, respectively. All the polymers showed typical amorphous diffraction patterns. All of the poly(ether imide)s showed excellent solubility and were readily dissolved in various solvents such as N‐methyl‐2‐pyrrolidinone, N,N‐dimethylacetamide, N,N‐dimethylformamide, pyridine, cyclohexanone, tetrahydrofuran, and even chloroform. Most of the polymers could be dissolved with chloroform concentrations as high as 30 wt %. These polymers had glass‐transition temperatures of 244–282 °C. Thermogravimetric analysis showed that all polymers were stable, with 10% weight losses recorded above 463 °C in nitrogen. These transparent, tough, and flexible polymer films were obtained through solution casting from N,N‐dimethylacetamide solutions. These polymer films had tensile strengths of 81–102 MPa and tensile moduli of 1.8–2.0 GPa. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2556–2563, 2002  相似文献   

7.
A novel combined main‐chain/side‐chain liquid crystalline polymer based on mesogen‐jacketed liquid crystal polymers (MJLCPs) containing two biphenyls per mesogenic core of MJLCPs main chain, poly(2,5‐bis{[6‐(4‐butoxy‐4′‐oxy‐biphenyl)hexyl]oxycarbonyl}styrene) (P1–P8) was successfully synthesized via atom transfer radical polymerization (ATRP). The chemical structure of the monomer was confirmed by elemental analysis, 1H NMR, and 13C NMR. The molecular characterizations of the polymer with different molecular weights (P1–P8) were performed with 1H NMR, gel permeation chromatography (GPC), and thermogravimetric analysis (TGA). Their phase transitions and liquid‐crystalline behaviors of the polymers were investigated by differential scanning calorimetry (DSC) and polarized optical microscope (POM). We found that the polymers P1–P8 exhibited similar behavior with three different liquid crystalline phases upon heating to or cooling in addition to isotropic state, which should be related to the complex liquid crystal property of the side‐chain and the main‐chain. Moreover, the transition temperatures of liquid crystalline phases of P1–P8 are found to be dependent on the molecular weight. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7310–7320, 2008  相似文献   

8.
A new bulky pendent bis(ether anhydride), 1,1‐bis[4‐(4‐dicarboxyphenoxy)phenyl]‐4‐phenylcyclohexane dianhydride, was prepared in three steps, starting from the nitrodisplacement of 1,1‐bis(4‐hydroxyphenyl)‐4‐phenylcyclohexane with 4‐nitrophthalonitrile to form bis(ether dinitrile), followed by alkaline hydrolysis of the bis(ether dinitrile) and subsequent dehydration of the resulting bis(ether diacid). A series of new poly(ether imide)s were prepared from the bis(ether anhydride) with various diamines by a conventional two‐stage synthesis including polyaddition and subsequent chemical cyclodehydration. The resulting poly(ether imide)s had inherent viscosities of 0.50–0.73 dL g?1. The gel permeation chromatography measurements revealed that the polymers had number‐average and weight‐average molecular weights of up to 57,000 and 130,000, respectively. All the polymers showed typical amorphous diffraction patterns. All of the poly(ether imide)s showed excellent solubility in comparison with the other polyimides derived from adamantane, norbornane, cyclododecane, and methanohexahydroindane and were readily dissolved in various solvents such as N‐methyl‐2‐pyrrolidinone, N,N‐dimethylacetamide (DMAc), N,N‐dimethylformamide, pyridine, cyclohexanone, tetrahydrofuran, and even chloroform. These polymers had glass‐transition temperatures of 226–255 °C. Most of the polymers could be dissolved in chloroform in as high as a 30 wt % concentration. Thermogravimetric analysis showed that all polymers were stable up to 450 °C, with 10% weight losses recorded from 458 to 497 °C in nitrogen. These transparent, tough, and flexible polymer films could be obtained by solution casting from DMAc solutions. These polymer films had tensile strengths of 79–103 MPa and tensile moduli of 1.5–2.1 GPa. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2066–2074, 2002  相似文献   

9.
Mesogen jacketed liquid crystalline poly(1‐alkyne) and poly(1‐phenyl‐1‐alkyne) linked pendants of terphenyl mesogens with hexyloxy tails at the waist position (? {RC?C? [(CH2)3OOC‐terpheyl‐(OC6H13)2]}n? , where R?H, PHATP(OC6)2 ; R?C6H5, PPATP(OC6)2 ) were synthesized. The influences of structural variations on the thermal, mesomorphic, and luminescent properties were investigated. Polymerizations of all monomers are carried out by WCl6‐Ph4Sn catalysts successfully. The polymers are stable (Td ≥ 340 °C) and soluble in common solvents. The monomers and polymers show enantiotropic SmA phases in the heating and cooling processes, and the lateral side chains of the mesogenic units are perpendicular to the main chain. The “jacket effect” of chromophoric terphenyl core “shell” around the main chain also contributes to polymers with high photoluminescence, and the pendant‐to‐backbone energy transfer path is involved in the luminescence process of this polymers. In comparison with monosubstituted polyacetylene PHATP(OC6)2 , the disubstituted polyacetylene PPATP(OC6)2 shows better photoluminescence in both THF solution and film, and exhibited about 40 nm red‐shifted than PHATP(OC6)2 , indicating that the “jacket effect” of terphenyl mesogens forces poly(1‐phenyl‐1‐alkyne) backbone to extend in a more planar conformation with a better conjugation. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

10.
A series of side‐chain‐functionalized α‐helical polypeptides, i.e., poly(γ‐4‐(3‐chloropropoxycarbonyl)benzyl‐L‐glutamate) (6) have been prepared from n‐butylamine initiated ring‐opening polymerization (ROP) of γ‐4‐(3‐chloropropoxycarbonyl)benzyl‐L‐glutamic acid‐based N‐carboxyanhydride. Polypeptides bearing oligo‐ethylene‐glycol (OEG) groups or 1‐butylimidazolium salts were prepared from 6 via copper‐mediated [2+3] alkyne‐azide 1,3‐dipolar cycloaddition or nuleophilic substitution, respectively. CD and FTIR analysis revealed that the polymers adopt α‐helical conformations both in solution and the solid state. Polymers bearing OEG (m = 3) side‐chains showed reversible LCST‐type phase transition behaviors in water while polymers bearing 1‐butylimidazolium and I? counter‐anions exhibited reversible UCST‐type transitions in water. Variable‐temperature UV‐vis analysis revealed that the phase transition temperatures (Tpts) were dependent on the main‐chain length and polymeric concentration. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2469–2480  相似文献   

11.
4‐Arm star side‐chain liquid crystalline (LC) polymers containing azobenzene with different terminal substituents were synthesized by atom transfer radical polymerization (ATRP). Tetrafunctional initiator prepared by the esterification between pentaerythritol and 2‐bromoisobutyryl bromide was utilized to initiate the polymerization of 6‐[4‐(4‐methoxyphenylazo)phenoxy]hexyl methacrylate (MMAzo) and 6‐[4‐(4‐ethoxyphenylazo)phenoxy]hexyl methacrylate (EMAzo), respectively. The 4‐arm star side‐chain LC polymer with p‐methoxyazobenzene moieties exhibits a smectic and a nematic phase, while that with p‐ethoxyazobenzene moieties shows only a nematic phase, which derives of different terminal substituents. The star polymers have similar LC behavior to the corresponding linear homopolymers, whereas transition temperatures decrease slightly. Both star polymers show photoresponsive isomerization under the irradiation with UV–vis light. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3342–3348, 2007  相似文献   

12.
A series of water‐soluble semirigid thermoresponsive polymers with well‐defined molecular weights based on mesogen‐jacketed liquid crystal polymers (MJLCPs), poly[bis(N‐hydroxyisopropyl pyrrolidone) 2‐vinylterephthalate] (PHIPPVTA) have been synthesized via reversible addition fragmentation chain transfer (RAFT) polymerization. Dynamic light scattering (DLS) revealed that the novel monomer and polymers have thermoresponsive properties with cloud point in the range between 10 and 90 °C. The cloud point was increased by 56.2 °C when the polymer molecular weight increased from 0.47 × 104 g mol?1 to 3.69 × 104 g mol?1. In addition, the cloud point of PHIPPVTA was decreased by 18.8 °C with the increase of polymer concentration from 5 to 10 mg mL?1. A slight increase (0.1–3.5 °C) of cloud point has been observed after knocking off the end‐groups of PHIPPVTA. Moreover, the cloud point of polymer increased with increasing of its molecular weight with or without the trithiocarbonate end‐groups, which showed the opposite trend comparing with other thermoresponsive polymers with flexible backbones. These polymers show a dramatic solvent isotopic effect that the cloud point in D2O was lower than in H2O. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
The controlled/living radical polymerization of 2‐(N‐carbazolyl)ethyl methacrylate (CzEMA) and 4‐(5‐(4‐tert‐butylphenyl‐1,3,4‐oxadiazol‐2‐yl)phenyl) methacrylate (t‐Bu‐OxaMA) via reversible addition‐fragmentation chain transfer polymerization has been studied. Functional polymers with hole‐ or electron‐transfer ability were synthesized with cumyl dithiobenzoate as a chain transfer agent (CTA) and AIBN as an initiator in a benzene solution. Good control of the polymerization was confirmed by the linear increase in the molecular weight (MW) with the conversion. The dependence of MW and polydispersity index (PDI) of the resulting polymers on the molar ratio of monomer to CTA, monomer concentration, and molar ratio of CTA to initiator has also been investigated. The MW and PDI of the resulting polymers were well controlled as being revealed by GPC measurements. The resulting polymers were further characterized by NMR, UV‐vis spectroscopy, and cyclic voltammetry. The polymers functionalized with carbazole group or 1,3,4‐oxadiazole group exhibited good thermal stability, with an onset decomposition temperature of about 305 and 323 °C, respectively, as determined by thermogravimetric analysis. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 242–252, 2007  相似文献   

14.
A series of mesogen‐jacketed liquid crystalline polymers, poly{2,2,3,3,4,4,4‐heptafluorobutyl 4′‐hydroxy‐2‐vinylbiphenyl‐4‐carboxylate} (PF3Cm, where m is the number of carbon atoms in the alkoxy groups, and m = 1, 4, 6, and 8), the side chain of which contains a biphenyl core with a fluorocarbon substituent at one end and an alkoxy unit of varying length on the other end, were designed and successfully synthesized via atom transfer radical polymerization. For comparison, poly{butyl 4′‐hydroxy‐2‐vinylbiphenyl‐4‐carboxylate} (PC4Cm), similar to PF3Cm but with a butyl group instead of the fluorocarbon substituent, was also prepared. Differential scanning calorimetric results reveal that the glass transition temperatures (Tgs) of the two series of polymers decrease as m increases and Tgs of the fluorocarbon‐substituted polymers are higher than those of the corresponding butyl‐substituted polymers. Wide‐angle X‐ray diffraction measurements show that the mesophase structures of these polymers are dependent on the number of the carbon atoms in the fluorocarbon substituent and the property of the other terminal substituent. Polymers with fluorocarbon substituents enter into columnar nematic phases when m ≥ 4, whereas the polymer PF3C1 exhibits no liquid crystallinity. For polymers with butyl substituents, columnar nematic phases form when the number of carbon atoms at both ends of the side chain is not equal at high temperatures and disappear after the polymers are cooled to ambient temperature. However, when the polymer has the same number of carbon atoms at both ends of the side chain, a hexagonal columnar phase develops, and this phase remains after the polymer is cooled. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

15.
A series of novel comb polymers, poly{2,5‐bis[(4‐methoxyphenyl)oxycarbonyl]styrene}‐g‐polystyrene (PMPCS‐g‐PS), with mesogen‐jacketed rigid side chains were synthesized by the “grafting onto” method from α‐yne‐terminated PMPCS (side chain) and poly(vinylbenzyl azide) (backbone) by Cu(I)‐catalyzed 1,3‐dipolar cycloaddition click reaction. The α‐yne‐terminated PMPCS was synthesized by Cu(I)‐catalyzed atom transfer radical polymerization initiated by a yne‐functional initiator. Poly(vinylbenzyl azide) was prepared by polymerizing vinylbenzyl chloride using nitroxide mediated radical polymerization to obtain poly(vinylbenzyl chloride) as the precursor which was then converted to the azide derivative. The chemical structure and architectures of PMPCS comb polymers were confirmed by 1H NMR, gel permeation chromatography, and multiangle laser light scattering. Both surface morphologies and solution behaviors were investigated. Surface morphologies of PMPCS combs on different surfaces were investigated by scanning probe microscopy. PMPCS combs showed different aggregation morphologies when depositing on silicon wafers with/without chemical modification. The PMPCS comb polymers transferred to polymer‐modified silicon wafers using the Langmuir‐Blodgett technique showed a worm‐like chain conformation. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
We report novel host polymers for a high‐efficiency polymer‐based solution‐processed phosphorescent organic light‐emitting diode with typical blue‐emitting dopant bis(4,6‐difluorophenylpyridinato‐N,C2)iridium(III) picolinate (FIrpic). The host polymers, soluble polynorbornenes with pendant carbazole derivatives, N‐phenyl‐9H‐carbazole ( P1 ), N‐biphenyl‐9H‐carbazole ( P2 ), and 9,9′‐(1,3‐phenylene)bis‐9H‐carbazole (mCP) ( P3 ) are efficiently synthesized by vinyl addition polymerization of norbornene monomers using Pd(II) catalyst in combination with 1‐octene chain transfer agent. The polymers exhibit high thermal stability with high decomposition (Td5 > 410 °C) and glass transition temperatures (Tg ≈ 268 °C). The HOMO (ca. ?5.5 to ?5.7 eV) and LUMO (ca. ?2.0 to ?2.1 eV) levels with the high triplet energy of about 2.7–3.0 eV suggest that the polymers are suitable for a host material for blue emitters. Among the solution‐processed devices that were fabricated based on the emissive layers containing the P1 ? P3 host doped with various concentrations of FIrpic (7–13 wt %), the best device with P3 host exhibits power efficiency of 3.0 lm W?1 and external quantum efficiency of 4.0% at a luminance of 1000 cd m?2 that is outstanding among the polymeric rivals. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
A new chiral half‐titanocene complex, [CpTiCl2(O‐(S)?2‐Bu)], is synthesized and characterized by 1H and 13C NMR spectroscopy. This complex is employed for the coordination polymerization of n‐butyl and n‐hexyl‐ isocyanate leading to chiral polymers, as revealed by their CD spectra. Only the left‐handed helix is produced, due to the chiral (S)?2‐butoxy group, which is bound to the polymer chain end. The polymerization of 3‐(triethoxysilyl)propyl isocyanate produces less soluble polymers. On the other hand, phenyl isocyanate reacts slowly with the complex leading quantitatively and selectively to triphenyl isocyanurate. 2‐Ethylhexyl isocyanate is slowly and selectively cyclotrimerized in the presence of the half‐titanocene complex. However, a statistical copolymer of 2‐ethylhexyl isocyanate and hexyl isocyanate is produced. The reaction of benzyl isocyanate with the complex leads to a mixture of low molecular weight polymer and cyclotrimer. The polymers are characterized using SEC, NMR, and CD spectroscopy and their thermal properties are investigated by TGA/DSC analysis. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2141–2151  相似文献   

18.
The solution‐phase behavior of three main‐chain viologen polymers, which are composed of isomeric xylyl units and triflimide as a counterion, was studied in methanol, dimethylformamide, acetonitrile, and dimethyl sulfoxide as solvents microscopically under crossed polarizers. Each of them exhibited a lyotropic lamellar phase in both polar protic and aprotic solvents. Their C* for the formation of biphasic solutions (1–5 wt %) and concentrations (20–30 wt %) for the lyotropic solutions in methanol was much lower than those in polar aprotic solvents (20–71 and 60–81 wt %, respectively). Their high solubility, high C* for the formation of biphasic solutions, and high concentrations for the formation of lyotropic solutions in polar aprotic solvents were related to the significant reduction of strong ionic interactions between triflimide and 4,4′‐bipyridinium ions in each of these viologen polymers. They were the first examples of viologen polymers that exhibited a lyotropic phase in polar aprotic solvents. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2015–2024, 2002  相似文献   

19.
2‐Bromopropionic acid 2‐(4‐phenylazophenyl)ethyl ester, 2‐bromopropionic acid 6‐(4‐phenylazophenoxy)hexyl ester (BPA6), 2‐bromopropionic acid‐(4‐phenylazoanilide), and 2‐bromopropionic acid 4‐[4‐(2‐bromopropionyloxy)phenylazo]phenyl ester (BPPE) were used as initiators with monofunctional or difunctional azobenzene for the heterogeneous atom transfer radical polymerization of methyl methacrylate with a copper(I) chloride/N,N,N,N,N″‐pentamethyldiethylenetriamine catalytic system. The rates of polymerizations exhibited first‐order kinetics with respect to the monomer, and a linear increase in the number‐average molecular weight with increasing monomer conversion was observed for these initiation systems. The polydispersity indices of the polymer were relatively low (1.15–1.44) up to high conversions in all cases. The fastest rate of polymerization and the highest initiation efficiency were achieved with BPA6, and this could be explained by the longer distance between the halogen and azobenzene groups and the better solubility of the BPA6 initiator. The redshifting of the UV absorptions of the polymers only occurred for the BPPE‐initiated system. The intensity of the UV absorptions of the polymers were weaker than those of the corresponding initiators in chloroform and decreased with the increasing molecular weights of the polymers in all cases. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2358–2367, 2005  相似文献   

20.
A set of poly[ω‐(4′‐cyano‐4‐biphenyloxy)alkyl‐1‐glycidylether]s were synthesized by the chemical modification of the corresponding poly(ω‐bromoalkyl‐1‐glycidylether)s with the sodium salt of 4‐cyano‐4′‐hydroxybiphenyl. New high‐molecular‐weight side‐chain liquid‐crystalline polymers were obtained with excellent yield and almost quantitative degree of modification. All side‐chain liquid‐crystalline polymers were rubbers soluble in tetrahydrofuran. The characterization by 1H and 13C NMR revealed no changes in the regioregular isotactic microstructure of the starting polymer and the absence of undesirable side reactions such as deshydrobromination. The liquid crystalline behavior was analyzed by DSC and polarized optical microscopy, and mesophase assignments were confirmed by X‐ray diffraction. Polymers that had alkyl spacers with n = 2 and 4 were nematic, those that had spacers with n = 6 and 8 were nematic cybotactic, and those that had longer spacers (n = 10 and 12) were smectic C and showed some crystallization of the side alkyl chains. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3002–3012, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号