首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The nanobubble inflation method is the only experimental technique that can measure the viscoelastic creep compliance of unsupported ultrathin films of polymers over the glass–rubber transition zone as well as the dependence of the glass transition temperature (Tg) on film thickness. Sizeable reduction of Tg was observed in polystyrene (PS) and bisphenol A polycarbonate by the shift of the creep compliance to shorter times. The dependence of Tg on film thickness is consistent with the published data of free‐standing PS ultrathin films. However, accompanying the shift of the compliance to shorter times, a decrease in the rubbery plateau compliance is observed. The decrease becomes more dramatic in thinner films and at lower temperatures. This anomalous viscoelastic behavior was also observed in poly(vinyl acetate) and poly (n‐butyl methacrylate), but with large variation in the change of either the Tg or the plateau compliance. By now, well established in bulk polymers is the presence of three different viscoelastic mechanisms in the glass–rubber transition zone, namely, the Rouse modes, the sub‐Rouse modes, and the segmental α‐relaxation. Based on the thermorheological complexity of the three mechanisms, the viscoelastic anomaly observed in ultrathin polymer films and its dependence on chemical structure are explained in the framework of the Coupling Model. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

2.
The physical aging behavior, time‐dependent densification, of thin polystyrene (PS) films supported on silicon are investigated using ellipsometry for a large range of molecular weights (MWs) from Mw = 97 to 10,100 kg mol?1. We report an unexpected MW dependence to the physical aging rate of h < 80‐nm thick films not present in bulk films, where samples made from ultra‐high MWs ≥ 6500 kg mol?1 exhibit on average a 45% faster aging response at an aging temperature of 40 °C compared with equivalent films made from (merely) high MWs ≤ 3500 kg mol?1. This MW‐dependent difference in physical aging response indicates that the breadth of the gradient in dynamics originating from the free surface in these thin films is diminished for films of ultra‐high MW PS. In contrast, measures of the film‐average glass transition temperature T g(h) and effective average film density (molecular packing) show no corresponding change for the same range of film thicknesses, suggesting physical aging may be more sensitive to differences in dynamical gradients. These results contribute to growing literature reports signaling that chain connectivity and entropy play a subtle, but important role in how glassy dynamics are propagated from interfaces. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1224–1238  相似文献   

3.
Thiourethane‐based thiol‐ene (TUTE) films were prepared from diisocyanates, tetrafunctional thiols and trienes. The incorporation of thiourethane linkages into the thiol‐ene networks results in TUTE films with high glass transition temperatures. Increases of Tg were achieved by aging at room temperature and annealing the UV cured films at 85 °C. The aged/annealed film with thiol prepared from isophorone diisocyanate and cured with a 10,080‐mJ/cm2 radiant exposure had the highest DMA‐based glass transition temperature (108 °C) and a tan δ peak with a full width at half maximum (FWHM) of 22 °C, indicating a very uniform matrix structure. All of the initially prepared TUTE films exhibited good physical and mechanical properties based on pencil hardness, pendulum hardness, impact, and bending tests. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5103–5111, 2007  相似文献   

4.
The isothermal structural relaxation (densification) of a family of glassy polynorbornene films with high glass transition temperatures (Tg > 613 K) is assessed via spectroscopic ellipsometry. Three polymers were examined: poly(butylnorbornene) (BuNB), poly(hydroxyhexafluoroisopropyl norbornene) (HFANB), and their random copolymer, BuNB‐r‐HFANB. The effective aging rate, β(T), of thick (∼1.2 μm) spun cast films of BuNB‐r‐HFANB is approximately 10−3 over a wide temperature window (0.49 < T/Tg < 0.68). At higher temperatures, these polymers undergo reactions that more dramatically decrease the film thickness, which prohibits erasing the process history by annealing above Tg. The aging rate for thick BuNB‐r‐HFANB films is independent of the casting solvent, which infers that rapid aging is not associated with residual solvent. β (at 373 K) decreases for films thinner than ∼500 nm. However, the isothermal structural relaxation of thin films of BuNB‐r‐HFANB exhibits nonmonotonic temporal evolution in thickness for films thinner than 115 nm film. The thickness after 18 h of aging at 373 K can be greater than the initial thickness. The rapid aging of these polynorbornene films is attributed to the unusual rapid local dynamics of this class of polymers and demonstrates the potential for unexpected structural relaxations in membranes and thin films of high‐Tg polymers that could impact their performance. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 53–61  相似文献   

5.
We have investigated the effect of sample preparation on the glass‐transition temperature (Tg) of thin films of polystyrene (PS). By preparing and measuring the glass‐transition temperature Tg of multilayered polymer films, we are able to assess the contribution of the spincoating process to the reduced Tg values often reported for thin PS films. We find that it is possible to determine a Tg even on the first heating cycle, and that by the third heating cycle (a total annealing time of 15 min at T = 393 K) the Tg value has reached a steady state. By comparing multilayered versus single layered films we find that the whole Tg depends only on the total film thickness, and not on the thickness of the individual layers. These results strongly suggest that the spincasting process does not contribute significantly to Tg reductions in thin polymer films. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4503–4507, 2004  相似文献   

6.
A novel temperature‐step experimental method that extends the Bodiguel‐Fretigny liquid dewetting method of investigating polymer thin films is described and results presented from an investigation of thickness effects on the glass transition temperature (Tg) of ultrathin polystyrene (PS) films. Unlike most other methods of thin film investigation, this procedure promises a rapid screening tool to determine the overall profile of Tg versus film thickness for ultrathin polymer films using a limited number of samples. Similar to our prior observations and other literature data, with this new method obvious Tg depression was observed for PS thin films dewetting on both glycerol and an ionic liquid. The results for PS dewetting on the two different liquids are similar indicating only modest effects of the substrate on the Tg‐film thickness relationship. In both instances, the Tg depression is somewhat less than for similar PSs supported on silicon substrates reported in the literature. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1343–1349  相似文献   

7.
The absolute heat capacity and glass transition temperature (Tg) of unsupported ultrathin films were measured with differential scanning calorimetry with the step-scan method in an effort to further examine the thermodynamic behavior of glass-forming materials on the nanoscale. Films were stacked in layers with multiple preparation methods. The absolute heat capacity in both the glass and liquid states decreased with decreasing film thickness, and Tg also decreased with decreasing film thickness. The magnitude of the Tg depression was closer to that observed for films supported on rigid substrates than that observed for freely standing films. The stacked thin films regained bulk behavior after the application of pressure at a high temperature. The effects of various preparation methods were examined, including the use of polyisobutylene as an interleaving layer between the polystyrene films. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3518–3527, 2006  相似文献   

8.
We used neutron reflectivity to measure the interfacial width in the immiscible system polystyrene/poly(n‐butyl methacrylate) (PS/PnBMA). Measurements were made on the same samples at temperatures ranging from below the glass‐transition temperature (Tg) of PS to slightly above. We observed significant broadening of the interface at temperatures below the Tg of PS, indicating chain mobility below the bulk Tg value. The interfacial width exhibited a plateau at a value of 20 Å in the temperature range of 365 K < T < 377 K. A control experiment involving hydrogenated and deuterated PS films (hPS/dPS) showed no such broadening over the same temperature region. The results are consistent with a reduction of the Tg of PS in the interfacial region of ~20 K. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2664–2670, 2001  相似文献   

9.
Novel cyclic olefin polymers (COPs) with excellent transparency and high glass‐transition temperature (Tg) synthesized from bulky norbornene derivative, exo‐1,4,4a,9,9a,10‐hexahydro‐9,10(1',2')‐benzeno‐l,4‐methanoanthracene (HBMN), and cis‐cyclooctene (COE) by ring‐opening metathesis copolymerization utilizing the “first‐generation Grubbs” catalyst, RuCl2(PCy3)2(CHPh), and subsequent hydrogenation was reported herein. To get amorphous copolymers, it was of great importance to control the feed ratios and the polymerization time for gradient copolymerization. All these copolymers showed very high Tgs (141.1–201.2 °C), which varied with the content of HBMN. The films of the gradient copolymers with only one Tg were highly transparent. On the contrary, all the block copolymers synthesized through sequential addition showed two thermal transition temperatures, Tg and melt temperature (Tm), and the films of these block copolymers were opaque. The mechanical performances of the COPs were also investigated. It is the first report that transparent COP could be prepared from bulky norbornene derivative and monocyclic olefin. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3240–3249  相似文献   

10.
We prepared two block copolymers 1 and 2 consisting of a third‐generation dendron with poly(ethylene oxide) (PEO) peripheries and a linear polystyrene (PS) coil. The PS molecular weights were 2000 g/mol and 8000 g/mol for 1 and 2 , respectively. The differential scanning calorimetry (DSC) data indicated that neither of the block copolymers showed glass transition, implying that there was no microphase separation between the PEO and PS blocks. However, upon doping the block copolymers with lithium triflate (lithium concentration per ethylene oxide unit = 0.2), two distinct glass transitions were seen, corresponding to the salt‐doped PEO and PS blocks, respectively. The morphological analysis using small angle X‐ray scattering (SAXS) and transmission electron microscopy (TEM) demonstrated that a hexagonal columnar morphology was induced in salt‐doped sample 1‐Li+ , whereas the other sample ( 2‐Li+ ) with a longer PS coil revealed a lamellar structure. In particular, in the SAXS data of 2‐Li+ , an abrupt reduction in the lamellar thickness was observed near the PS glass transition temperature (Tg), in contrast to the SAXS data for 1‐Li+ . This reduction implies that there is a lateral expansion of the molecular section in the lamellar structure, which can be interpreted by the conformational energy stabilization of the long PS coil above Tg. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2372–2376, 2010  相似文献   

11.
The glass transition behavior in athermal blends of poly(α‐methyl styrene) (PaMS) and its hexamer is investigated using differential scanning calorimetry (DSC). The results, along with previous data on similar blends of PaMS/pentamer, are analyzed in the context of the Lodge–McLeish self‐concentration model. A methodology is described to partition the calorimetric transition to obtain effective Tgs for each component of the blend. The dependences of these effective Tgs on overall blend composition are described by the Lodge–McLeish model, although the self‐concentration effect is less than expected based on the Kuhn length. The length scales of the cooperatively rearranging regions for the two components in the blends are also calculated adapting Donth's fluctuation model to the partitioned DSC transitions and are found to be similar for the two components and show a slight decrease at intermediate concentrations. The kinetics associated with the glass temperature, Tg, is examined by studying the cooling rate dependence of Tg for the pure components and the blends, as well as by examining the enthalpy overshoots in the heating DSC scans. It is observed that the cooling rate dependence of Tg in PaMS/hexamer blends at intermediate concentrations is similar to that of the hexamer, indicating that the kinetics of the glass transition for blends is dominated by the high mobility oligomeric component. Moreover, compared to the pure materials, the PaMS/hexamer blends exhibit a considerably depressed enthalpy overshoot, presumably resulting from their broader relaxation time distribution. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 418–430, 2008  相似文献   

12.
The phase behavior of ternary poly‐(2‐vinylpyridine) (P2VPy)/poly‐(N‐vinyl‐2‐pyrrolidone) (PVP)/bis‐(4‐hydroxyphenyl)methane (BHPM) blends was studied. Fourier transform infrared spectroscopic examinations demonstrated that BHPM interacts with P2VPy and PVP through hydrogen‐bonding interactions. The addition of a sufficiently large amount of BHPM transformed an opaque blend with two glass‐transition temperatures (Tg's) to a transparent single‐Tg blend. Scanning electron microscopic studies showed that the transparent single‐Tg blend is micro‐phase‐separated at a scale of about 30 nm. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1815–1823, 2001  相似文献   

13.
Poly(amic acid)s (PAAs), which are precursors of polyimides, often undergo gel formation during their synthesis or storage, and these insoluble gels have been discarded. In this work, we discovered that the gels could be converted to homogeneous PAA solutions by fast and simple microwave (MW) irradiation. The PAA gels were placed inside a domestic MW oven, and MW irradiation was carried out with 240 W for 2 min. The recycled PAA solutions afforded polyimide films, coatings, and powders. The polyimides prepared from the recycled PAA solutions exhibited higher glass transition temperatures (Tgs), decomposition temperatures, and char yields than comparison polyimides obtained from ordinary PAA solutions. Flexible free‐standing polyimide films were obtained by drop‐casting of the MW‐treated solutions and subsequent thermal imidization. Mechanical properties and dielectric constants were measured for the polyimide films and coatings, respectively. This new method has significant advantages for the environment, economy, and industry. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 981–987  相似文献   

14.
Nanostructure, glass transition dynamics and elastic properties were studied in the 3D nanodiamond‐containing composites based on polyurethane‐poly(2‐hydroxyethyl methacrylate) semi‐interpenetrating polymer networks (PU‐PHEMA semi‐IPNs), neat PU or PHEMA matrices. Nanodiamond (ND) content in the nanocomposites varied from 0.25 to 3 wt %. Combined differential scanning calorimetry/ laser‐interferometric creep rate spectroscopy/atomic force microscopy approach was utilized. A large impact of small 3D ND additives on PU‐PHEMA networks' dynamics and properties was revealed under conditions when an average inter‐particle distance L exceeds by far gyration radius Rg. The pronounced heterogeneity of glass transitions' dynamics and two opposite effects were observed. The main effect was a strong suppression of PHEMA glass transition dynamics at 90–180 °C, with the enhancement of creep resistance and threefold to sixfold increasing modulus of elasticity. The peculiarly crosslinked structure of nanocomposites, due to double covalent hybridization, resulted in low rheological percolation threshold, and a synergistic effect in dynamics was observed. Less pronounced effect of accelerating dynamics in the temperature region between β‐ and α‐transitions in PHEMA was associated with dynamics in domains with loosened molecular packing. The distinct physical limit for “anomalous” decreasing Tg is predicted in terms of the notion of the common segmental nature of α‐ and β‐relaxations. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1696–1712, 2008  相似文献   

15.
Positron annihilation lifetime spectroscopy (PALS), density, and differential scanning calorimetric (DSC) measurements were used to study systematically the variation of the glass‐transition temperature (Tg) and the size v and number density Nh of local free volumes in n‐alkyl‐branched polypropylenes. The samples were metallocene‐catalyzed propylene copolymers with different α‐olefins (from C4 to C16) and a different α‐olefin content (between 0 and 20 mol %). From the total specific volume and crystallinity the specific volume of the amorphous phase Va was estimated and used to calculate the fractional free (hole) volume h and value of Nh. The variations of Tg, v, Va, h, and Nh were related to the degree (number and length) of branching. Tg decreases and v increases linearly with the number and length of n‐alkyl branches. This behavior was attributed to an increased segmental mobility caused by branching. Both values, Tg and v, follow linear master curves as a function of the degree of branching (DB) if this is defined as the number of all side‐chain carbons with respect to a total of 1000 (main‐chain and side‐chain) carbons. Only propylene/1‐butene copolymers deviated from these relations. A linear relation between v and Tg was also found. The number density of holes was estimated to be Nh = 0.49(±0.07) nm?3 and Nh′ = 0.58(±0.11) × 1021 g?1, respectively. It shows a slight variation with the DB, which is also seen in the behavior of the specific volume Va. This variation was explained by the appearance of sterical hindrances resulting from short‐chain branches that may prevent an efficient packing of the chains. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 434–453, 2002; DOI 10.1002/polb.10108  相似文献   

16.
Poly(2‐propyl‐oxazoline)s can be prepared by living cationic ring‐opening polymerization of 2‐oxazolines and represent an emerging class of biocompatible polymers exhibiting a lower critical solution temperature in aqueous solution close to body temperature. However, their usability is limited by the irreversibility of the transition due to isothermal crystallization in case of poly(2‐isopropyl‐2‐oxazoline) and the rather low glass transition temperatures (Tg < 45 °C) of poly(2‐n‐propyl‐2‐oxazoline)‐based polymers. The copolymerization of 2‐cyclopropyl‐2‐oxazoline and 2‐ethyl‐2‐oxazoline presented herein yields gradient copolymers whose cloud point temperatures can be accurately tuned over a broad temperature range by simple variation of the composition. Surprisingly, all copolymers reveal lower Tgs than the corresponding homopolymers ascribed to suppression of interchain interactions. However, it is noteworthy that the copolymers still have Tgs > 45 °C, enabling convenient storage in the fridge for future biomedical formulations. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3118–3122  相似文献   

17.
A series of novel poly(urethane amide) films were prepared by the reaction of a polyurethane (PU) prepolymer and a soluble polyamide (PA) containing aliphatic hydroxyl groups in the backbone. The PU prepolymer was prepared by the reaction of polyester polyol and 2,4‐tolylenediisocyanate and then was end‐capped with phenol. Soluble PA was prepared by the reaction of 1‐(m‐aminophenyl)‐2‐(p‐aminophenyl)ethanol and terephthaloyl chloride. The PU prepolymer and PA were blended, and the clear, transparent solutions were cast on glass substrates; this was followed by thermal treatments at various temperatures to produce reactions between the isocyanate group of the PU prepolymer and the hydroxyl group of PA. The opaque poly(urethane amide) films showed various properties, from those of plastics to those of elastomers, depending on the ratio of the PU and PA components. Dynamic mechanical analysis showed two glass‐transition temperatures (Tg's), a lower Tg due to the PU component and a higher Tg due to the PA component, suggesting that the two polymer components were phase‐separated. The rubbery plateau region of the storage modulus for the elastic films was maintained up to about 250 °C, which is considerably higher than for conventional PUs. Tensile measurements of the elastic films of 90/10 PU/PA showed that the elongation was as high as 347%. This indicated that the alloying of PU with PA containing aliphatic hydroxyl groups in the backbone improved the high‐temperature properties of PU and, therefore, enhanced the use temperature of PU. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3497–3503, 2002  相似文献   

18.
A novel dibromo compound containing unsymmetrical substituted bi‐triarylamine was synthesized. A conjugated polymer was prepared via the Suzuki coupling from the newly prepared dibromo compound and 9,9‐dioctylfluorene‐2,7‐bis(trimethyleneboronate). The glass transition temperature (Tg) of the conjugated polymer was 140 °C, 10% weight‐loss temperatures (Td10) in nitrogen was 458 °C, and char yield at 800 °C in nitrogen higher than 64%. Cyclic voltammogram of the polymer film cast onto an indium‐tin oxide (ITO)‐coated glass substrate exhibited two reversible oxidation redox couples at 0.70 and 1.10 V versus Ag/Ag+ in acetonitrile solution. The polymer films revealed excellent stability of electrochromic characteristics, with a color change from yellow green of the neutral form to the dark green and blue of oxidized forms at applied potentials ranging from 0 to 1.3 V. The color switching time and bleaching time were 4.25 and 7.22 s for 860 nm and 5.51 s and 6.48 s for 560 nm. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1469–1476, 2010  相似文献   

19.
Flash differential scanning calorimetry was used to study the glass transition temperature Tg of polycarbonate ultrathin films. The investigation was made as a function of film thickness from 22 to 350 nm and over a range of cooling rates from 0.1 to 1000 K/s. Polycarbonate spin cast films were floated on a layer of grease on the calorimetric chip. The results show a greatly reduced glass temperature for the thinnest films relative to the macroscopic value. We also observed that the magnitude of the glass temperature reduction decreases as the cooling rate increases with the highest cooling rates showing little thickness dependence of the Tg. Dynamic fragility and activation energy at Tg were found to decrease with decreasing film thickness. The results are discussed in the context of literature reports for supported and freely standing polycarbonate films. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1462–1468  相似文献   

20.
The dynamic properties of water confined within nanospaces are of interest given that such water plays important roles in geological and biological systems. The enthalpy‐relaxation properties of ordinary and heavy water confined within silica‐gel voids of 1.1, 6, 12, and 52 nm in average diameter were examined by adiabatic calorimetry. Most of the water was found to crystallize within the pores above about 2 nm in diameter but to remain in the liquid state down to 80 K within the pores less than about 1.6 nm in diameter. Only one glass transition was observed, at Tg=119, 124, and 132 K for ordinary water and Tg=125, 130, and 139 K for heavy water, in the 6‐, 12‐, and 52‐nm diameter pores, respectively. On the other hand, two glass transitions were observed at Tg=115 and 160 K for ordinary water and Tg=118 and 165 K for heavy water in the 1.1‐nm pores. Interfacial water molecules on the pore wall, which remain in the noncrystalline state in each case, were interpreted to be responsible for the glass transitions in the region 115–139 K, and internal water molecules, surrounded only by water molecules in the liquid state, are responsible for those at 160 or 165 K in the case of the 1.1‐nm pores. It is suggested that the glass transition of bulk supercooled water takes place potentially at 160 K or above due to the development of an energetically more stable hydrogen‐bonding network of water molecules at low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号