首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermo‐responsive block‐graft fluoropolymer is synthesized and investigated the self‐assembly morphology and the tunable wettability surface on cotton fabric by dip‐coating into the micelles with different temperatures. Well‐defined block‐graft copolymer is prepared by click chemistry with poly(hexafluorobutyl methacrylate)‐block‐poly(glycidyl methacrylate) (PHFBMA‐b‐PGMA) and homopolymer poly(N‐isopropylacrylate) with alkyne on main chain (Alkynyl‐PNIPAM) to synthesize final block‐graft polymer PHFBMA‐b‐(PGMA‐g‐PNIPAM). The thermo‐responsive behaviors of block‐graft polymer prove that the diameter for fluoropolymer micelle is about 50–70 nm with uniform sphere shape at room temperature and bigger and broader at 40 °C. The surface of cotton fabric processed in micelle solution at room temperature is smooth and has good hydrophobic property, while it has the hydrophilic property dipped in high temperature micelle solution. This work may give valuable guidance for fabricating a facile strategy to establish controllable wettability surfaces on different substrates, which is a promising candidate for the coating materials and industrial fields. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 992–1002  相似文献   

2.
The various morphology and structure microspheres were fabricated via one‐step single‐solvent electrospraying of hydrophilic and hydrophobic block modified copolymer of polycaprolactone (PCL). A honeycomb‐like hierarchical structure microspheres of PCL‐b‐PTFOA(4h) and abundant nanometer pores of PCL‐b‐PEG400 microspheres were obtained due to the solvent evaporation, thermally and polymer diffusion‐induced phase separation effect. Furthermore, a superhydrophobic coatings and robust superhydrophobic‐coated cotton woven fabric surfaces were prepared by using PCL‐b‐PTFOA(4h) microspheres with hierarchical structure and low surface energy. The contact angle (CA) and sliding angle (SA) of PCL‐b‐PTFOA(4h) microspheres‐coated cotton woven fabric surfaces reached 164.4 ± 5.5° and 6.8 ± 0.5°, respectively, which allows for self‐cleaning. The self‐cleaning test demonstrated that the coated superhydrophobic surface could shed aqueous dyes and dust without any trace. The superhydrophobic‐coated fabric shows good soaping fastness against mechanical abrasion without significant reduction of CA. This electrospraying coating of block copolymers can provide a simple, facile, and promising technique for producing multifunctional textiles.  相似文献   

3.
Modification of cotton fabric surface by random or block copolymers of glycidyl methacrylate and lauryl methacrylate is studied. It is shown that a cotton fabric surface modified in such a way takes on superhydrophobic properties and differs in stability under long-term contact with aqueous media.  相似文献   

4.
A graft-polymerization process with atomized lauryl methacrylate as monomer is used to fabricate fluorine-less and asymmetrically superhydrophobic cotton fabrics. The polymers synthesized in the process can form nanoscale hierarchical structures on the cotton surface, and the surface morphology can be controlled by choosing a suitable solvent or by varying the feeding quantity of the monomer mist stream. After applying the surface modification to cotton fabrics, an asymmetrically superhydrophobic surface is achieved without any additional nanosized particles, and the solvent damages on the cotton fabrics are controllable at a very low level. Surface characterization reveals that the modified side of the cotton fabric has laundering-durable and mechanically stable superhydrophobicity with a water contact angle of more than 150°, whereas the opposite inherits the hydrophilic property of pristine cotton fabric. The modified cotton fabrics are found to have medium-level water-absorbing ability between pristine cotton and PET fabrics, as well as good vapor transmissibility similar to pristine cotton fabric. These properties are of great significance in textile and medical applications.  相似文献   

5.
The fabrication of novel hydrophobic, superhydrophobic, and oleophobic surfaces on glass using nanosilica particles modified with polymer brushes prepared via surface initiated Cu(0)‐mediated reversible‐deactivation radical polymerization was demonstrated. Monomers including n‐butyl acrylate, 2,2,2‐trifluoroethyl methacrylate, and 1,1,1,3,3,3‐hexafluoroisopropyl acrylate were used to synthesize a series of nanosilica–polymer organic/inorganic hybrid materials. Products were analyzed using infrared spectroscopy, thermogravimetric analysis, scanning and transmission electron microscopy. The coated nanosilica showed core–shell structures that contains polymer brushes up to 67 wt %. The application of these particles for modifying surface wettability was examined by covalently attaching them to glass via a recently developed one‐pot “grafting to” methodology using “thio‐bromo click” chemistry. Atomic force microscopy topographic images show up to 25 times increase in roughness of the coated glass compared to blank glass sample. Contact angle measurements showed that nanosilica coated with PBA and PTFEM produced hydrophobic glass surfaces, while a superhydrophobic and oleophobic surface was generated using nanosilica functionalized with PHFIPA. This novel methodology can produce superhydrophobic and oleophobic surfaces in an easy and fast way without the need for tedious and time‐consuming processes, such as layer‐by‐layer deposition, high temperature calcination, and fluorinated oil infusion. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018  相似文献   

6.
A cotton fabric was coated with a polymer that contains both poly(dimethyl siloxane) (PDMS) and poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA). When the repeat unit number of PDMS is about three‐fold that of PDMAEMA and the fabric is exposed to air, the fabric is superhydrophobic because PDMS in the coating covers the PDMAEMA chains. Upon contact with an oil‐in‐water emulsion, the water‐soluble PDMAEMA rises to the top and the side in contact with the emulsion becomes hydrophilic. The emerged PDMAEMA chains then cause the emulsion droplets to coagulate, and the aggregated oil fills the pores on the superhydrophobic side of the fabric. The oil‐impregnated side remains hydrophobic even upon prolonged contact with water. Thus, a Janus fabric is elegantly generated in situ and sustained. This easy‐to‐prepare Janus fabric rapidly and efficiently separates oil from emulsions and may find practical applications.  相似文献   

7.
Clay/poly(glycidyl methacrylate) nanocomposites (clay/PGMA) were prepared by in situ radical photopolymerization using N,N‐dimethylaminopropyltrimethoxysilane(DMA)‐modified bentonite clay acting as hydrogen donor for benzophenone in solution. This initiating system permits to photopolymerize glycidyl methacrylate between the lamellae of the DMA‐modified clay. The approach provides exfoliated nanocomposites as judged by the measurements of X‐ray diffraction. However, a low fraction of persistent intercalated clay regions was visible by transmission electron microscopy. X‐ray photoelectron spectra analyses indicate that the nanocomposites have PGMA‐rich surface. The clay/PGMA nanocomposites can be readily dispersed in ethanol. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 800–808  相似文献   

8.
A series of superhydrophobic poly(methacryloxypropyltrimethoxysilane, MPTS‐b‐2,‐2,3,3,4,4,4‐heptafluorobutyl methacrylate, HFBMA)‐grafted silica hybrid nanoparticles (SiO2/PMPTS‐b‐PHFBMA) were prepared by two‐step surface‐initiated atom transfer radical polymerization (SI‐ATRP). Under the adopted polymerization conditions in our previous work, the superhydrophobic property was found to depend on the SI‐ATRP conditions of HFBMA. As a series of work, in this present study, the effects of polymerization conditions, such as the initiator concentration, the molar ratio of monomer and initiator, and the polymerization temperature on the SI‐ATRP kinetics and the interrelation between the kinetics and the surface properties of the nanoparticles were investigated. The results showed that the SI‐ATRP of HFBMA was well controlled. The results also showed that both the surface microphase separation and roughness of the hybrid nanoparticles could be strengthened with the increase of the molecular weight of polymer‐grafted silica hybrid nanoparticles. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

9.
含氟环氧树脂杂化纳米二氧化硅超疏水材料的制备与性能   总被引:1,自引:0,他引:1  
目前超疏水材料的制备方法大都存在着制备工艺复杂的缺点。 本文采用传统自由基聚合方法,以甲基丙烯酸缩水甘油酯(GMA)和苯乙烯(St)为单体,合成具有交联性的前驱聚合物P(GMA-r-St)。 再用三氟乙酸(TFA)对其进行接枝改性,制备含氟环氧聚合物P(GMA-r-St)-g-TFA。 利用γ-氨丙基三乙氧基硅烷(KH-550)改性纳米二氧化硅(SiO2),对其进行傅里叶变换红外光谱(FTIR)、热重(TG)表征。 氨基改性的纳米二氧化硅与含氟环氧聚合物混合制备的超疏水改性材料,棉织物表面经其浸泡,可快速构建超疏水结构。 通过改变改性纳米颗粒的含量,探究其构筑的棉织物的疏水性能和耐溶剂性能。 研究结果表明,经浸泡改性的棉织物,水接触角为160°,耐溶剂性时间为130 min,具备很好的耐溶剂性。 该方法可广泛应用于多种基底材料表面的疏水改性。  相似文献   

10.
针对目前用于油/水分离的超疏水材料普遍存在的原料不环保、不可降解、涂层耐久性差等缺点,采用简便的浸渍法,制备了一种环保、工艺简单且性能优良的超疏水材料。首先,使用水性聚氨酯(WPU)将聚甲基丙烯酸甲酯-甲基丙烯酸缩水甘油酯P(MMA-r-GMA)微球固定在棉织物表面,构造微纳米级粗糙结构。其次,通过水解-缩合反应,将无毒的十六烷基三甲氧基硅烷(HDTMS)与甲基三乙氧基硅烷(MTES)锚定在棉织物表面,制备得到超疏水棉织物。结果表明,改性棉织物接触角最高可达157.3(°),滚动角为5(°)。同时具有很好的耐溶剂性,在酸碱溶液中浸泡30 min后,接触角几乎无变化。油水分离效率最高可达97.8%,即使在经过10次循环分离之后,油水分离效率仍然在95%以上。该超疏水织物具有出色的油水分离效率和优良的稳定性,可用于可持续且环保的油水分离领域。  相似文献   

11.
A superhydrophobic cotton textile with high antibacterial properties has been fabricated. The cotton textile was coated through the in situ growth of ZnO‐SiO2 nanoparticles in presence of chitosan as the template agent via a hydrothermal process at 95 °C. This process was followed by the coating of additional layers of hexadecyltrimethoxysilane (HDTMS). The obtained cotton textile showed antibacterial property against Staphylococcus epidermis and Escherichia coli with inhibition zones up to 18.26 and 8.48 mm, respectively. Scanning electron microscopy (SEM) revealed that the coating had a rough surface, which was attributed to the distribution of ZnO‐SiO2 nanorods of hexagonal shape. This rough surface creates a superhydrophobic layer that repels the bacteria, as proven by the large water contact angle of approximately 150°. Nevertheless, the HDTMS layers prolong the durability of hydrophobicity for up to 3 h.  相似文献   

12.
In this article, we demonstrate that hydrogel‐based composite membranes are used as semipermeable materials for the construction of photobioreactors (PBRs). PBRs are developed to culture microalgae using nutrients dissolved in seawater, and thus they need to be fabricated with membranes possessing sufficient material‐transport properties. While hydrogels are characterized by their highly swelling nature in water and therefore have desirable transport of dissolved matter, they lack the mechanical strength to be cast into thin structures of large surface area. This issue motivated us to design a new concept, i.e., fabric‐hydrogel composite membranes ( FHCM s). A cotton fabric inside the hydrogel matrix endows the composite with tensile strength, which enables casting of FHCM s into thin membranes. Several FHCM s were prepared with 2‐hydroxyethyl methacrylate ( HEMA ), cross‐linking poly(ethylene glycol) dimethacrylate ( PEGDMA ) and a sheet of gauze by controlling the composition of the monomers and water. In the permeability measurement of nitrate ions, a key ingredient for the growth of microalgae, the permeability coefficient reached as high as 1.2 x 10?8 m2 min?1, which is roughly three times higher than that of a commercially available semipermeable membrane (3.3 x 10?9 m2 min?1). In the following evaluation of microalgal culture, a PBR constructed with a FHCM was able to maintain sufficient ion concentration and pH of the culture broth, supporting microalgal growth. These results suggest that the composite membranes with hydrogel and fabric have potential in the application of microalgal culture for bio‐diesel production in a marine environment. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 108–114  相似文献   

13.
Superhydrophobic polycaprolactone (PCL) membranes with hierarchical structure were fabricated via alternate electrospinning/electrospraying techniques. Electrospun PCL/methyl silicone oil (PCL/MSO) nanofibers were employed as substrate. PCL/MSO‐PCL microspheres (PCL/MSO‐PCLMS) hierarchical membrane was prepared via electrosprayed PCLMS as an additional layer on the substrate. Field emission scanning electron microscopy images showed the formation of hierarchical PCL/MSO‐PCLMS membranes. Compared to pure PCL fibers substrate (120 ± 1.3°), the water contact angle (WCA) of MSO‐modified PCL membrane was 142 ± 0.7°. The most interesting observation was that the WCA of PCLMS without any modification could be achieved to 146 ± 2.8°. On this basis, PCL/MSO‐PCLMS hierarchical membrane possessed superhydrophobic surface with 150 ± 0.6° of WCA. The excellent surface roughness and air‐pocket capacity of hierarchical membranes would make the membranes more hydrophobic. The maximum oil (n‐hexane) adsorption capacity of PCL/MSO‐PCLMS membrane was 32.53 g g?1. Oil–water separation efficiencies of the superhydrophobic membranes were all higher than 99.93% after 10 cycles. The hierarchically structured PCL superhydrophobic membranes indicate the potential applications of environmentally friendly biopolymers as separation membranes. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 421–430  相似文献   

14.
Soft matter nanoparticles exhibiting rich polymorphism with reactive pentafluorophenyl methacrylate (PFPMA) units in their coronae were prepared via non‐polar reversible addition‐fragmentation chain transfer dispersion polymerization and polymerization‐induced self‐assembly. Poly(stearyl methacrylate‐stat‐PFPMA) macro‐CTAs, containing up to 12 mol % PFPMA, were used in n‐octane and n‐tetradecane for the subsequent copolymerization of 3‐phenylpropyl methacrylate. Both formulations gave the full, common family of nanoparticles (spheres, worms, and vesicles) as determined by transmission electron microscopy. Reaction of the PFP ester repeating units in the coronal layer of spherical nanoparticles with benzylamine, tetrahydrofurfurylamine, N,N‐dimethylethylenediamine, and an amine functional methyl red dye yielded a new library of functional spherical nano‐objects. The success of the nucleophilic acyl substitution reactions was confirmed using a combination of 1H/19F NMR and Fourier transform infrared spectroscopies as well as dynamic light scattering. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2326–2335  相似文献   

15.
The minimization of nonspecific protein adsorption is a crucial step in the development of bioseparation processes, immunoassays, and affinity diagnostics. Among the numerous biomaterials, polyzwitterions are known to effectively suppress protein and cell adhesion. This article describes the formation of monodisperse polymer microspheres coated with polysulfobetaine with the aim to limit nonspecific adsorption of bovine serum albumin (BSA) as a model protein. In this process, 2‐μm poly(glycidyl methacrylate) (PGMA) microspheres were prepared by dispersion polymerization. To render the microspheres hydrophilic and biocompatible, [3‐(methacryloylamino)propyl]dimethyl(3‐sulfopropyl)ammonium hydroxide (MPDSAH) was grafted from the surface by reversible addition‐fragmentation chain transfer (RAFT) polymerization. Elemental analysis of the modified microspheres revealed up to 20 wt % of poly{[3‐(methacryloylamino)propyl]dimethyl(3‐sulfopropyl)ammonimum hydroxide} (PMPDSAH). The microspheres were characterized in terms of particle size, morphology, and zeta potential. The amount of BSA nonspecifically adsorbed on the PMPDSAH‐modified microspheres decreased to half of that captured on the unmodified PGMA microspheres. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2273–2284  相似文献   

16.
The diblock copolymer poly(methyl methacrylate)‐b‐poly(sodium sulfonated glycidyl methacrylate) (PMMA‐b‐PSGMA) was end‐attached by its hydrophobic block (PMMA) onto mica hydrophobized by a stearic trimethylammonium iodide (STAI) layer, to form a polyelectrolyte brush immersed in water. With a surface force balance (SFB), we extended earlier measurements between two such brush layers for the case of normal and shear forces at different shear rates, surface separation, and compressions between one mica surface coated with STAI or a STAI‐diblock layer against a bare mica surface. After coating one of the surfaces with STAI, a long range attraction that results in a jump into an adhesive flat contact between the hydrophobic and hydrophilic surfaces was observed. A very different behavior was seen after forming the polyelectrolyte brush on the STAI‐coated surface. The long range attraction was replaced by repulsion, accompanied by very low friction during shear (ca. three orders of magnitude lower than with adsorbed polyelectrolytes). On further compression, a weak attraction to the adhesive contact was observed. From the final surface–surface contact separation, we deduce that most of the polyelectrolyte diblock brush layer was squeezed out from the gap, leaving the STAI layer and a small amount of the polymer attached to the surface. Stick‐sliding behavior was seen while applying shear, suggesting a dissipation mechanism caused by the trapped polyelectrolyte. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 193–204, 2005  相似文献   

17.
The superhydrophobic cotton fabrics were prepared by combining the coating of titanium dioxide (TiO2) with the subsequent dodecafluoroheptyl-propyl-trimethoxysilane (DFTMS) modification. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) measurements revealed that the nanosized TiO2 sphere consisted of granular rutile. The TiO2 layer coated on the cotton altered both the surface roughness for enhancing the hydrophobicity and UV-shielding property. The cotton fabric samples showed excellent water repellency with a water contact angle as high as 162°. The UV-shielding was characterized by UV-vis spectrophotometry, and the results indicated that the fabrics could dramatically reduce the UV radiation. The photocatalytic progress showed that organic stains were successfully degraded by exposure of the stained fabric to UV radiation. Such multifunctional cotton fabrics may have potentials for commercial applications.  相似文献   

18.
采用高碘酸钠对棉织物表面进行选择性氧化生成醛基,选取乙二胺与醛基反应,通过膦氢化加成反应将阻燃剂亚磷酸二甲酯接枝到棉织物表面,最后通过三羟甲基三聚氰胺对棉织物表面进行接枝改性,制备了含三羟甲基三聚氰胺/乙二胺/亚磷酸二甲酯阻燃棉织物.通过傅里叶红外光谱(FTIR)对改性后棉织物的结构进行了表征,通过极限氧指数(LOI)测试研究了其阻燃性能,通过锥形量热测试研究了其燃烧行为,通过在40℃皂水中洗涤10次考察了其耐水性能,通过扫描电子显微镜测试了其表面及燃烧后炭层的形貌.研究结果表明,经表面改性后,棉织物的LOI值由(19.5±1.0)%提高到了(43.1±1.0)%,经耐水洗测试后,LOI值仅下降至(42.6±1.0)%,保持了非常好的阻燃性能,表明通过表面接枝方法制备的三羟甲基三聚氰胺/乙二胺/亚磷酸二甲酯阻燃棉织物具有非常好的耐水洗性能.表面阻燃改性提高了棉织物在燃烧过程中的成炭性能,形成的连续膨胀的炭层较好地保护了内部织物,抑制了织物的降解和燃烧,从而提高了棉织物的阻燃性能.  相似文献   

19.
In this study, we designed and investigated pH‐responsive nanoparticles based on different ratios of monomers with primary, secondary or tertiary amino groups. For this purpose, copolymers of methyl methacrylate (MMA) with different compositions of amino methacrylates (2‐(dimethylamino)ethyl methacrylate (DMAEMA), 2‐(tert‐butylamino)ethyl methacrylate (tBAEMA) and 2‐aminoethyl methacrylate hydrochloride (AEMA·HCI)) were synthesized using the reversible addition‐fragmentation chain transfer (RAFT) polymerization process. The controlled nature of the radical polymerization was demonstrated by kinetic studies. All copolymers show low dispersities (?M < 1.2) with amino contents between 9 and 21 mol %. For the nanoparticle formation, nanoprecipitation with subsequent solvent evaporation was used. All suspensions were characterized by dynamic light scattering (DLS) and scanning electron microscopy (SEM). Different initial conditions of the formulations resulted in differently sized nanoparticles that have monomodal size distributions, relatively narrow polydispersity index (PDI) values and positive zeta potential values. The pH‐stability test results demonstrated that, depending on the structure and amount of the amino content, the obtained nanoparticles reveal a reversible pH‐response, such as dissolution at acidic pH values. The ability of the nanoparticles to encapsulate guest molecules was confirmed by pyrene fluorescence studies. The cytotoxicity assay results showed that the nanoparticles did not have any significant cytotoxic effect. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2711–2721  相似文献   

20.
将氢氧化镁(Mg(OH)2)凝胶沉积到棉纤维上,以提高棉纤维表面粗糙度和阻燃性能,随后将含有Mg(OH)2的棉纤维浸渍到聚二甲基硅氧烷(PDMS)溶液,获得阻燃超疏水棉织物。 并对棉纤维进行了傅里叶变换红外光谱仪(FTIR)、扫描电子显微镜(SEM)、疏水性、热稳定性、阻燃性能和耐久性测试。 结果表明,Mg(OH)2负载到织物上,使得织物表面具有一定的微/纳米结构,形成了粗糙涂层。 当Mg(OH)2浓度为1.0 mol/L时,Mg(OH)2/PDMS改性的织物接触角(CA)可达158°,极限氧指数(LOI)提升至24.5%,导热系数为0.0525 W/(m·K), 具有超疏水和阻燃性能。 整理后织物经过20次洗涤,100次磨擦,极端条件处理后,CA仍大于150°,LOI值高于23%,显示了较好的耐久性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号