首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is a growing interest in using quantum dots (QDs) and metallic nanoparticles (NPs), both for luminescence enhancement and surface‐enhanced Raman scattering (SERS). Here, we study the electromagnetic‐field enhancement that can be generated by lead‐sulfide (PbS) QDs using three‐dimensional finite‐element simulations. We investigate the field enhancement associated with combinations of PbS QDs with metallic NPs and substrates. The results show that high field enhancement can be achieved by combining PbS QDs with metallic NPs of larger sizes. The ideal size for Ag NPs is 25 nm, providing a SERS enhancement factor of ~5*108 for light polarization parallel to the NP dimer axis and a gap of 0.6 nm. For Au NPs, the bigger the size, the higher is the field for the studied diameters, up to 50 nm. The near‐field values for PbS QDs above metallic substrates were found to be lower compared to the case of PbS QD‐metal NP dimers. This study provides the understanding for the design and application of QDs for the enhancement of near‐field phenomena. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
PbS colloidal quantum dot (CQD)‐based depleted bulk‐heterojunction solar cells were constructed, using the 1.2 μm thick nanowire array infiltrated with PbS QDs bearing Br ligands. The long‐term stability tests were performed on the solar cells without encapsulation in air under continuous light soaking using a Xe lamp with an AM1.5G filter (100 mW cm?2). Time course of solar cell performances during the tests showed two time periods with distinct behavior, that is, the initial transient time period and the relatively stable region following it. The power conversion efficiency was found to keep approximately 90% of the initial value at the end of the 3000 h light soaking test. The stability tests suggest that the PbS surface modification or passivation reactions play an important role in achieving such a high stability, and demonstrate that PbS CQD/ZnO nanowire array‐based depleted bulk‐heterojunction solar cells are highly stable. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

3.
In the last few years, all‐inorganic perovskite CsPbBr3 nanocrystals (NCs) have attracted tremendous attention for its high carrier mobility, long carrier diffusion length, excellent visible light absorption, and more importantly superior air stability. In fact, photodetectors (PDs) are designed and fabricated using the CsPbBr3 NCs with very high performance. Herein, by optimizing the NC shape, size, and surface passivation, the CsPbBr3 PDs are developed with an even higher performance. It is found that the PDs based on CsPbBr3 nanoribbons show the best photoresponse among all common NC structures synthesized. Moreover, it is found that 6,6‐phenyl‐C61‐butyric acid ethyl ester can be used to passivate defects on the CsPbBr3 nanoribbon surface and shows the charge transfer. As a result, the device displays superior photoresponsivity (R = 18.4 A W−1), excellent signal‐to‐noise ratio, as high as 104, and a very sharp rise/decay time (8.7/3.5 ms). The method demonstrated may offer an attractive strategy to improve sensitivity for all‐inorganic perovskite PDs in general.  相似文献   

4.
Glass‐embedded Cd1−xCoxS quantum dots (QDs) with mean radius of R ≈ 1.70 nm were successfully synthesized by a novel protocol on the basis of the melting‐nucleation synthesis route and herein investigated by several experimental techniques. Incorporation of Co2+ ions into the QD lattice was evidenced by X‐ray diffraction and magnetic force microscopy results. Optical absorption features with irregular spacing in the ligand field region confirmed that the majority of the incorporated Co2+ ions are under influence of a low‐symmetry crystal field located near to the Cd1−xCoxS QD surface. Electron paramagnetic resonance data confirmed the presence of Co2+ ions in a highly inhomogeneous crystal field environment identified at the interface between the hosting glass matrix (amorphous) and the crystalline QD. The acoustic‐optical phonon coupling in the Cd1−xCoxS QDs (x ≠ 0.000) was directly observed by Raman measurements, which have shown a high‐frequency shoulder of the longitudinal optical phonon peak. This effect is tuned by the size‐dependent sp‐d exchange interaction due to the magnetic doping, causing variations in the coupling between electrons and longitudinal optical phonon. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The results of investigations of mid-infrared photodetectors based on InAsSbP quantum dot (QD) grown on InAs(100) substrate by modified liquid phase epitaxy are presented. The atomic force microscope measurements have shown that the surface density of grown QDs is (4–8) × 109 cm?2. Also, the morphology and crystalline quality of grown QDs are investigated by a scanning tunneling microscope. Photodetectors based on n-InAs(100) substrate with InAsSbP QDs on its surface were fabricated in the form of a photoconductor cell. The photoresponse spectrum extended up to 4 μm was observed. The optical properties of fabricated structures were investigated under He–Ne laser irradiation with wavelength of 1.15 μm. It was found that the relative surface conductance increases by 16% at power density of 0.15 W/cm2. Capacitance hysteresis with maximal remnant capacitance of 2.17 nF at 103 Hz was observed as well.  相似文献   

6.
L Huang  M Strathman  LY Lin 《Optics letters》2012,37(15):3144-3146
We propose a new approach to experimentally determine the spatial resolution of nanogap quantum dot (QD) photodetectors consist of solution-processed QDs. Cross talk between a pair of closely positioned QD photodetectors was measured. Devices with 200?nm spacing exhibit low crosstalk of 8.4%. A single QD photodetector also shows high sensitivity, with a lowest detectable optical intensity of 95.3 fW/μm2 achieved. The results show the potential of nanogap QD photodetectors for applications in high-density imaging/sensing arrays.  相似文献   

7.
In the recent years, the heterojunction solar cells based on quantum dots (QDs) have attracted attention due to strong light absorbing characteristics and the size effect on the bandgap tuning. This paper reports on the kinetics of interfacial charge separation of PbS QDs/(001) TiO2 nanosheets heterojunction solar cells. PbS QDs are deposited using a bifunctional linker molecule on two different TiO2 films, i.e., TiO2 nanosheets (with 001 dominant exposed facet) and TiO2 nanoparticles (with 101 dominant exposed facet). Upon bandgap excitation, electrons are transferred from the PbS QDs conduction band to the lower lying conduction band of TiO2. Based on the ultrafast pump‐probe laser spectroscopy technique, the kinetics of charge separation is scrutinized at the PbS/TiO2 interface. The interfacial charge separation at PbS/TiO2 nanosheets films made of (001) dominant exposed facets is five times faster than that on (101) dominant exposed facets TiO2 nanoparticles. The quantum yields for charge injection are higher for the (001) TiO2 nanosheets than the (101) TiO2 nanoparticles due to enhanced interfacial interaction with (001) surface compared to the (101) nanoparticles. The superior interfacial charge separation at PbS/(001) nanosheets respect to PbS/(101) nanoparticles is consistent with the higher photocurrent and enhanced power conversion efficiency in the PbS QDs/(001) TiO2 heterojunction solar cell. The use of (001) TiO2 nanosheets can be a better alternative to conventional mesoporous TiO2 films in QD heterojunction solar cells and perovskites‐based heterojunction solar cells.  相似文献   

8.
Achieving bright, reliable, robust, and stable probes for in vivo imaging is becoming extremely urgent for the cancer imaging research community. To date very few works have reported on elucidating in the varied and chemically complex biological milieu. The authors report detailed investigations of the synthesis of near‐infrared, water dispersive, strongly luminescent, and highly stable PbS/CdS/ZnS core/shell/shell quantum dots (QDs). These QDs are extremely stable, they could keep their initial morphology, dispersion status, and photoluminescence (PL) in phosphate buffered saline buffer for as long as 14 months. The QDs also show excellent photostability and could keep ≈80% of their initial PL intensity after 1 h continuous, strong UV illumination. More interestingly, they show negligible toxicity to cultured cells even at high QDs concentration. Given these outstanding properties, the QDs are explored for in vivo, tumor imaging in mice. With one order of magnitude lower QD concentration (0.04 mg mL–1), significantly weaker laser intensity (0.04 W cm–2 vs ≈1 W cm–2), and considerably shorter signal integration time (≤1 ms vs hundreds of ms) as compared to the best reported rare earth doped nanoparticles, the QDs show high emission intensity even at injection depth of ≈2.5 mm.  相似文献   

9.
III‐nitride light‐emitting diodes (LEDs) and laser diodes (LDs) are ultimately limited in performance due to parasitic Auger recombination. For LEDs, the consequences are poor efficiencies at high current densities; for LDs, the consequences are high thresholds and limited efficiencies. Here, we present arguments for III‐nitride quantum dots (QDs) as active regions for both LEDs and LDs, to circumvent Auger recombination and achieve efficiencies at higher current densities that are not possible with quantum wells. QD‐based LDs achieve gain and thresholds at lower carrier densities before Auger recombination becomes appreciable. QD‐based LEDs achieve higher efficiencies at higher currents because of higher spontaneous emission rates and reduced Auger recombination. The technical challenge is to control the size distribution and volume of the QDs to realize these benefits. If constructed properly, III‐nitride light‐emitting devices with QD active regions have the potential to outperform quantum well light‐emitting devices, and enable an era of ultra‐efficient solid‐state lighting.

  相似文献   


10.
All‐optical modulation based on silicon quantum dot doped SiOx:Si‐QD waveguide is demonstrated. By shrinking the Si‐QD size from 4.3 nm to 1.7 nm in SiOx matrix (SiOx:Si‐QD) waveguide, the free‐carrier absorption (FCA) cross section of the Si‐QD is decreased to 8 × 10−18 cm2 by enlarging the electron/hole effective masses, which shortens the PL and Auger lifetime to 83 ns and 16.5 ps, respectively. The FCA loss is conversely increased from 0.03 cm−1 to 1.5 cm−1 with the Si‐QD size enlarged from 1.7 nm to 4.3 nm due to the enhanced FCA cross section and the increased free‐carrier density in large Si‐QDs. Both the FCA and free‐carrier relaxation processes of Si‐QDs are shortened as the radiative recombination rate is enlarged by electron–hole momentum overlapping under strong quantum confinement effect. The all‐optical return‐to‐zero on‐off keying (RZ‐OOK) modulation is performed by using the SiOx:Si‐QD waveguides, providing the transmission bit rate of the inversed RZ‐OOK data stream conversion from 0.2 to 2 Mbit/s by shrinking the Si‐QD size from 4.3 to 1.7 nm.  相似文献   

11.
Quantum dot (QD)‐based light‐emitting materials are gaining increased attention because of their easily tunable optical properties desired for various applications in biology, optoelectronics, and photonics. However, few methods can be used to manufacture volumetric materials doped with more than one type of QD other than QD‐polymer hybrids, and they often require complicated preparation processes and are prone to luminescence quenching by QD aggregation and separation from the matrix. Here, simultaneous doping of a volumetric glass‐based nanocomposite with two types of QDs is demonstrated for the first time in a single‐step process using the nanoparticle direct doping method. Glass rods doped with CdTe, CdSe/ZnS, or co‐doped with both QDs, are obtained. Photoluminescence and lifetime experiments confirm temperature‐dependent double emission with maxima at 596 and 720 nm with mean lifetimes up to 16 ns, as well as radiative energy transfer from the short wavelength–emitting QDs to the long wavelength–emitting QDs. This approach may enable the simple and cost‐efficient manufacturing of bulk materials that produce multicolor luminescence with cascade excitation pumping. Applications that could benefit from this include broadband optical fiber amplifiers, backlight systems in LCD screens, high‐power LEDs, or down‐converting solar concentrators used to increase the efficiency of solar panels.  相似文献   

12.
Highly performance photodetector requires a wide range of responses of the incident photons and converts them to electrical signals efficiently. Here, a photodetector based on formamidinium lead halide perovskite quantum dots (e.g., FAPbBr3 QDs)–graphene hybrid, aiming to take the both advantages of the two constituents. The FAPbBr3 QD–graphene layer not only benefits from the high mobility and wide spectral absorption of the graphene material but also from the long charge carrier lifetime and low dark carrier concentration of the FAPbBr3 QDs. The photodetector based on FAPbBr3 QD–graphene hybrid exhibits a broad spectral photoresponse ranging from 405 to 980 nm. A photoresponsivity of 1.15 × 105AW−1 and an external quantum efficiency as high as 3.42 × 107% are obtained under an illumination power of 3 µW at 520 nm wavelength. In detail, a high responsivity is achieved in 405–538 nm, while a relatively low but fast response is observed in 538–980 nm. The photoelectric conversion mechanism of this hybrid photodetector is investigated in the view of built‐in electric field from the QD–graphene contact which improves the photoconductive gain.  相似文献   

13.
Red, green, blue (RGB) selective zinc oxide (ZnO) phototransistors with multi-photoactive quantum-dot (QD) channels have been fabricated by a charge-assisted layer-by-layer (LbL) patterning process. QDs were patterned as RGB pixels in multi-photoactive QD channels through the LbL process. The solution-processed ZnO film, which acts as an active-channel layer of the ZnO TFTs, is patterned via a photoinduced surface engineering method to reduce the leakage current of the ZnO TFTs. The average off-current of the patterned ZnO TFTs reduced from 10?10 to 10?11 A. QDs absorb visible light and generate photoelectrons, which are then transferred to the ZnO to produce photocurrents. The device shows photoresponsivity of 9.4 mA/W, 12.5, and 137 A/W to the illumination of 638, 520, and 405 nm wavelength light. Our results suggest a promising way to develop an RGB selective phototransistor that uses QDs as a visible light absorption layer and ZnO as an active channel semiconductor.  相似文献   

14.
Molybdenum disulfide (MoS2) quantum dots (QDs) are known for their excitation‐wavelength‐dependent photoluminescent (PL) properties. However, the mechanism of this phenomenon is still unclear. Here, small size MoS2 QDs with a narrow size distribution are synthesized. Based on the decay study and PL dynamics, a reasonable radiation model is presented to understand the special PL properties, i.e., the carrier recombination in the localized surface defect states generated the PL. Accordingly, this optical property is used to fabricate multicolor light‐emitting devices with the same MoS2 QDs. The emission color covers the full visible spectrum from blue to red, only by adjusting the thickness of the down‐conversion QD layers.  相似文献   

15.
Quaternary InAsSbP quantum dots (QD) with the surface concentration of (3–5)×109 cm−2 have been grown on the InAs(100) substrate by the modified version of liquid-phase epitaxy. Morphology and distribution of densities of QDs were studied by means of atomic-force microscope. Diameter distribution of QDs was revealed to be Gaussian. The mean value of QD diameter is 23.1 nm with the variance of 6.9 nm. Two types of infrared photodetectors (IRPD) on the basis of InAs(100), with and without InAsSbP-QDs on the substrate surface, were fabricated and studied. Spectra of photoresponse of both types of IRPD at room temperature were measured and analyzed and a red shift was revealed for structures with QDs. Capacitance characteristics of IRPD and relative change in their surface resistance after irradiation with cw He-Ne laser have been studied.  相似文献   

16.
CdSeS quantum dots (QDs) are firstly introduced into a NiO photocathode for photocathodic dye‐sensitized solar cells (p‐DSCs). The optimized sample exhibits a short‐circuit density (14.68 mA cm?2) and power conversion efficiency (1.02%) that are almost one order of magnitude higher than the reported value of p‐QDSCs. Steady‐state photoluminescence and time‐resolved photoluminescence measurements indicate that the photoexcited holes can be almost completely injected from CdSeS QDs into the valence band of NiO. At the same time, it can be observed from electrochemical impedance spectra measurements.  相似文献   

17.
Particular features and quenching mechanisms of exciton luminescence of water-soluble nanocomposites that are formed as a result of the interaction of surface charged semiconductor quantum dots (QDs) CdSe/ZnS (d CdSe = 2.8 nm) and cationic porphyrins (H2TMPyrP4+ and ZnTMPyrP4+) have been studied theoretically and experimentally. It has been found that, in CdSe/ZnS??Porphyrin conjugates, there occurs long-range inductive resonance electronic excitation energy transfer from surface modified (with thioglycolic or mercaptoundecanoic acid) QDs to porphyrins, which is accompanied by quenching of the exciton luminescence of QDs and an increase in the fluorescence intensity of porphyrin. It has been shown that, when mercaptoundecanoic acid is used as a QD shell, the QD luminescence quenching efficiency by porphyrins follows the F?rster-Galanin theory and depends on the overlap integral between the CdSe/ZnS luminescence band and the absorption spectra of free-base porphyrin H2TMPyrP4+ and its metal complex ZnTMPyrP4+. It has been revealed that, as the QDs ? Zn-porphyrin intercenter distance decreases from 39.1 (mercaptoundecanoic acid) to 30.1), a considerable QD luminescence quenching is observed; however, the energy transfer efficiency substantially decreases, from 55% in the former case to 23% in the latter one. Based on the spectral-luminescent data and quantum-chemical calculations, it has been found that the chemical change of H2TMPyrP4+ in the structure of the complex with CdSe/ZnS QDs passivated by thioglycolic or mercaptoundecanoic acid is caused by the formation of a metal complex ZnTMPyrP4+. Based on calculations of the redox-potentials, it has been concluded that the low luminescence quantum yield of CdSe/ZnS QDs passivated by residues of mercaptocarboxylic acids S?(CH2) n COO? and its dependence on the number of CH2 groups are related to the possibility of photoinduced electron transfer from the HOMO of passivating molecules to QDs (QD* ? S?(CH2)nCOO? hole transfer). It has been shown that the quenching of the exciton luminescence of QDs in heterogeneous structures CdSe/ZnS(thioglycolic acid)??ZnTMPyrP4+, which is complementary to the energy transfer, can be caused by the photoinduced electron transfer that involves the participation of the LUMO of the ZnTMPyrP4+ molecule (QD* ? ZnTMPyrP4+).  相似文献   

18.
The interaction of CdSe/ZnS quantum dots (QDs) with metal-free tetrapyridinoporphyrazine (TPPA) molecules in chloroform has been investigated. It was found that, at QD concentrations lower than ~3 × 10?7 M, QD luminescence is quenched in the presence of TPPA and characteristic changes occur in the absorption and luminescence spectra of TPPA, which reflect the interaction of TPPA molecules with the QD surface. Along with the QD luminescence quenching, sensitized luminescence of TPPA molecules adsorbed on QDs was observed. The luminescence excitation spectra of adsorbed TPPA molecules unambiguously indicate the presence of energy transfer from QDs to TPPA. The efficiency of energy transfer from QDs to TPPA is estimated from the quantum yield of sensitized TPPA luminescence.  相似文献   

19.
Ti‐doped FeOOH quantum dots (QD) decorated on graphene (GN) sheets are designed and fabricated by a facile and scalable synthesis route. Importantly, the Ti‐doped FeOOH QD/GN are successfully dispersed within bacterial cellulose (BC) substrate as bending anode with large loading mass for flexible supercapacitor. By virtue of its favorable architecture, this composite electrode exhibits a remarkable areal capacitance of 3322 mF cm?2 at 2 mA cm?2, outstanding cycle performance (94.7% capacitance retention after 6000 cycles), and excellent mechanical strength (68.7 MPa). To push the energy density of flexible supercapacitors, the optimized asymmetric supercapacitor using Mn3O4/GN/BC as positive electrode and Ti‐doped FeOOH QD/GN/BC as negative electrode can be cycled reversibly in the operating voltage range of 0–1.8 V and displays ultrahigh areal energy density of 0.541 mWh cm?2, ultrahigh volumetric energy density of 9.02 mWh cm?3, reasonable cycling performance (9.4% decay in specific capacitance after 5000 cycles), and good capacitive retention at bending state.  相似文献   

20.
Red‐light photodetectors without filters are in urgent need for narrowband applications such as full‐color imaging and multi‐output visible light communication (VLC). However, their development is hindered by the lack of small‐band‐gap and narrowband response materials. Without wavelength filters, a new type of photodetector with a simple single‐layer architecture is developed, based on a stable small‐band‐gap squarylium dye and characterized by a detectivity peak at 680 nm and full width at half maximum of 80 nm. The device, which exhibits high stability in air and humid conditions, shows a significantly low dark current of ∼2 nA·cm−2 at −2 V and high specific detectivity of 3.2 × 1012 Jones. The response current ratio of the device to red, green, and blue lights with a luminous flux amplitude ratio of 3:6:1 (standard ratio for white light) is 100:12:1.1. These properties indicate that the squarylium dye red‐light photodetectors are promising for VLC and other narrowband optoelectronic applications.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号