首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silica nanoparticles (SNPs) are applicable in various fields due to their unique physicochemical characteristics. However, concerns over their potential adverse effects have been raised. In our previous studies, we reported that SNPs could induce abnormal high incidence of multinucleation. The aim of this study is to further investigate the mechanisms of multinucleation induced by SNPs (68 nm) in human normal liver L-02 cells (L-02 cells). In order to determine the cytotoxicity of SNPs, MTT assay was performed, and the cell viability was decreased in a dose-dependent manner. The intracellular reactive oxygen species (ROS) detected by flow cytometry and multinucleation observed by Giemsa stain showed that ROS generation and rate of multinucleated cells increased after SNPs exposure. N-acetyl-cysteine (NAC), a glutathione precursor against SNP-induced toxicity, was used as a ROS inhibitor to elucidate the relationship between ROS and multinucleation. The presence of NAC resulted in inhibition of both ROS generation and rate of multinucleation. Moreover, Western blot analysis showed that the protein levels of Cdc20, Aurora B, and Survivin were down-regulated, and the PI3K/Akt/GSK-3β pathway was activated by SNPs. In conclusion, our findings strongly suggested that multinucleation induced by SNPs was related to PI3K/Akt/GSK-3β signal pathway activation and downregulation of G2/M phase-related protein and chromosomal passenger proteins.  相似文献   

2.
Diverse nanoparticles have been widely applied in different fields, including industries and biomedical sciences. Recent developments in nanotechnology have broadened the potential applications of nanotechnology in clinical diagnosis and medical therapy of malignant and non-malignant diseases. Gold nanoparticles (AuNPs) have been reported to possess unique physico-chemical properties; they have been investigated in studies on tumor growth and metastasis. Here, we explored the possible pharmacological functions of AuNPs on the mouse melanoma cell line, B16F10. We demonstrated that AuNPs of sizes 1–3, 3–5, and 10–15 nm exerted dose-dependent cytotoxic effects after 72-h treatments. AuNPs (4 and 10 ppm) of 1–3 and 3–5 nm were more cytotoxic than those of 10–15 nm. However, AuNPs of 1–3 nm were more cytotoxic against benign HaCaT keratinocytes than those of 3–5 nm. Thus, 4 ppm of AuNPs of 3–5 nm was considered relatively safe and an ideal candidate for this study. Further investigations revealed that AuNPs could induce sub-G1 phase accumulation, cleavage of caspase-3 and poly-(ADP-ribose) polymerase, and activation of JNK/p38. The expression of pro-apoptotic protein, Bax, was also induced. Furthermore, platelet-derived growth factor BB-induced migration and motility of melanoma cells were reduced after pretreatment with AuNPs of 3–5 nm. Adhesion assay showed that AuNPs of 3–5 nm could significantly suppress the adhesion of melanoma cells to collagen. In summary, AuNPs of 3–5 nm might be potential anti-tumor agents, as they were selectively cytotoxic against and inhibited motility of melanoma cells.  相似文献   

3.
The ultrasound‐assisted self‐assembly and cross‐linking of lysozyme at the water–air and water–perfluorohexane interfaces are shown to produce lysozyme‐shelled hollow microbubbles (LSMBs) and microcapsules (LSMC), respectively. The arrangement of lysozyme at the air–liquid or oil–liquid interfaces is accompanied by changes in the bioactivity and conformational state of the protein. The interaction of LSMB and LSMC with human breast adenocarcinoma cells (SKBR3) is studied. LSMB and LSMC are phagocyted by cells within 2 h without exerting a cytotoxic activity. The cellular internalization kinetics of LSMB and LSMC and the effects on cell cycle are evaluated using flow cytometry. Evidence for the internalization of microparticles and degradation within the cell are also monitored by confocal and scanning electron microscopic analyses. The integrity of cell membrane and cell cycle is not affected by LSMBs and LSMCs uptake. These studies show that the positively charged LSMB and LSMC are not cytotoxic and can be readily internalized and degraded by the SKBR3 cells. LSMBs and LSMCs show a different uptake kinetics and intracellular degradation pattern due to differences in the arrangement of the protein at the air–liquid or oil–liquid interfaces.  相似文献   

4.
The objective of this study was to evaluate the influence of size and surface functionality of amorphous silica nanoparticles (SNPs) on their interaction with cultured cells. The intracellular uptake, phagocytic activity, and possible mechanisms of toxicity induced by SNPs were studied on murine alveolar macrophages and two epithelial cancer cell lines. It was found that phagocytic cells are more susceptible to amorphous SNPs than epithelial cells. SNPs with functionalized surfaces were capable to induce the formation of apoptotic cells to a higher extent than plain particles. Plain SNPs induced plasma membrane damage in phagocytic cells to a higher extent and caused cell death in a shorter period of time than surface-functionalized SNPs. The prevalence of necrotic mode of cell death was observed after treatment with plain SNPs. In the range studied surface functionality played an important role in SNPs toxicity.  相似文献   

5.
We study the uptake and distribution of transferrin (Tf)-conjugated CdSe/CdS/ZnS quantum dots (QDs) in single living HeLa cells with both fluorescence confocal microscopy and three-dimensional (3D) reconstruction technique. By increasing the co-incubation time or the dosage of QDs-Tf, we find that the uptake of QDs-Tf bioconjugates in the cells increases correspondingly, but with different uptake rates. Additionally, the distribution of QDs-Tf, in single live HeLa cells is time dependent. To our knowledge, this is the first study on quantitatively analyzing the uptake and distribution of bioconjugated QDs in single living cells. Such QDs nanoplatform can be further modified for developing biomedical evaluation tool in cancer diagnosis and targeted drug delivery.  相似文献   

6.
The challenges of nanoparticles, such as size‐dependent toxicity, nonbiocompatibility, or inability to undergo functionalization for drug conjugation, limit their biomedical application in more than one domain. Oval‐shaped iron@gold core–shell (oFe@Au) magnetic nanoparticles are engineered and their applications in magnetic resonance imaging (MRI), optical coherence tomography (OCT), and controlled drug release, are explored via photo stimulation‐generated hyperthermia. The oFe@Au nanoparticles have a size of 42.57 ± 5.99 nm and consist of 10.76 and 89.24 atomic % of Fe and Au, respectively. Upon photo‐stimulation for 10 and 15 minutes, the levels of cancer cell death induced by methotrexate‐conjugated oFe@Au nanoparticles are sixfold and fourfold higher, respectively, than oFe@Au nanoparticles alone. MRI and OCT confirm the application of these nanoparticles as a contrast agent. Finally, results of in vivo experiments reveal that the temperature is elevated by 13.2 °C, when oFe@Au nanoparticles are irradiated with a 167 mW cm?2 808 nm laser, which results in a significant reduction in tumor volume and scab formation after 7 days, followed by complete disappearance after 14 days. The ability of these nanoparticles to generate heat upon photo‐stimulation also opens new doors for studying hyperthermia‐mediated controlled drug release for cancer therapy. Applications include biomedical engineering, cancer therapy, and theranostics fields.  相似文献   

7.
Numerous gold nanostructures have the potential for photothermal therapy in cancers. Here, gold nanocages and gold nanoshells are synthesized, the sizes of which are fine‐tuned for a response at 750 nm wavelength. Their photothermal therapeutic efficiency is compared at gold concentration of 100 lg mL?1 using a near‐infrared laser (750 nm). The biocompatibility for varying concentrations of gold (1 to 100 lg mL?1) is performed in a normal cell line and laser‐mediated cell cytotoxicity for varying time intervals (7.5 and 10 min) is carried out in breast cancer cells. This study shows that when analyzed under similar conditions, the gold nanocages show better biocompatibility and are more efficient in near‐infrared absorption and photothermal conversion in comparison with conventional gold nanoshells. When subjected to photothermal laser ablation of breast cancer cell line for 7.5 min and 10 min, the nanocages are able to induce 62.92 ± 3.25% and 96.41 ± 3.04% reduction in cell viability, respectively, in comparison to nanoshells, in which a 43.35 ± 1.91% and 79.89 ± 4.74% reduction in cell viability is observed. The current study shows that the gold nanocages can outperform gold nanoshells and effectively kill cancer cells without any significant cytotoxic effect on normal cells.  相似文献   

8.
AlSalhi  M. S.  Atif  M.  AlObiadi  A. A.  Aldwayyan  A. S. 《Laser Physics》2011,21(4):733-739
The present study evaluates the photodynamic damage with 5-aminolevulinic acid (5-ALA) using HeLa as experimental model. HeLa cell line was irradiated with red light (He-Ne laser, λ = 632.8 CW nm). The influence of different incubation times and concentrations of 5-ALA, different irradiation doses and various combinations of photosensitizer and light doses on the cellular viability of HeLa cells were studied. The optimal uptake of photosensitizer ALA in HeLa cells was investigated by means of PpIX fluorescence intensity by exciting the HeLa cell suspension at 450 nm and a detection wavelength set at 690 nm. Cells viability was determined by means of trypan blue solution. The spectrometric measurements showed that the maximal cellular uptake of 5-ALA occurred after 4 h in vitro incubation. We found that the combination with 5-ALA and laser irradiation leads to time/concentration-dependent increase of cells death and also energy doses-dependent enlarge the cells death. The fluorescence intensity after PDD of carcinoma cells reduce when compared with the control group. The fluorescence emission spectral profiles after PDD of carcinoma cells showed a dip around 425–525 nm when compared with the control group. This may be due to the damage of mitochondria component of cells. The percentage of HeLa cells after PDD shows that the percentage of cells survival rate as function of laser dose (power). Hence it is clear that at 200 μg/ml ALA and 20 mW laser irradiation, more than 70% of HeLa cells were dead after 15 min.  相似文献   

9.
Resistance of cancer stem cells to radiotherapy remains a major obstacle to successful cancer management. Prominin‐1 (PROM1) is a cancer stem cell marker. Nanoparticle (NP) chemotherapeutics preferentially accumulate in tumors and are able to target cancer and cancer stem‐like cells through cancer cell‐specific ligands, making them uniquely suited as radiosensitizers for chemoradiation therapy. Using a biocompatible apoferritin NP, a PROM1‐targeted NP carrying irinotecan (PROM1‐NP) is engineered. The synergistic effect of the NP and irradiation is evaluated in PROM1‐overexpressing HCT‐116 colorectal cancer cell lines in vitro and in vivo. PROM1‐NP has a size of 17.2 ± 0.2 nm and surface charge of ?13.5 ± 0.2 mV. It demonstrates higher intracellular uptake than nontargeted NP or irinotecan alone. Treatment with PROM1‐NPs decreases HCT‐116 cell proliferation in a dose‐ and time‐dependent manner. In vitro radiosensitization reveals that PROM1‐NP is significantly more effective as a radiosensitizer than nontargeted NP or irinotecan. HCT‐116 tumor xenograft growth is markedly slower following treatment with PROM1‐NP plus irradiation, suggesting that PROM1‐NP is more effective as a radiosensitizer than irinotecan and nontargeted NP in vivo. This study provides the first preclinical evidence of the effectiveness of PROM1‐targeted NP formulation of irinotecan as a radiosensitizer.  相似文献   

10.
It is disclosed how the sizes of rod‐shaped paclitaxel‐nanosuspensions (PTX‐Ns) that are less than 500 nm affect their in vitro and in vivo performances. A size reduction from 500 to 160 nm enhances the cellular uptake and subsequent cytotoxicity, due to the participation of caveolae‐mediated endocytosis; moreover, the ability of the PTX‐Ns to penetrate tumors is well correlated with the extent to which the caveolae pathway participates in cellular uptake, as their ability to target caveolae is markedly promoted as their size decreased to 160 nm. Also, the size reduction markedly alters the in vivo performance and tumor targeting. It is disclosed that via enhanced tumor penetration and retention but not simply increased tumor accumulation, size reduction of PTX‐Ns results in significant improvement in antitumor activities. Overall, this study highlights the importance of the size of the PTX‐Ns and the participation of caveolae‐mediated endocytosis in controlling their biological functions and will assist in the design and optimization of new nanosuspension formulations for disease therapy.  相似文献   

11.
It is important to understand the interaction mechanisms between nanomaterials and adipose‐derived stem cells for biomedical application. Nanoscale bioactive glass has positive effects on guiding osteoblasts differentiation and bone regeneration. However, the effects and molecular mechanism of monodispersed bioactive glass nanoparticles on the osteogenic differentiation of adipose‐derived stem cells are still not clear up to now. In this study, the effects and underlying molecular mechanism of monodispersed bioactive glass nanoparticles on the osteogenic differentiation of adipose‐derived stem cells are investigated in minute detail. The results show that nanoparticles (100–200 nm) can be absorbed by stem cells and is distributed in cytoplasm and nucleus. In both culture conditions (normal and osteoinductive), nanoparticles (80 µg mL−1) can significantly enhance the osteogenic differentiation of stem cells through upregulating the alkaline phosphatase activity, osteogenic genes and protein expressions, as well as calcium deposition. Further study suggests that the activation of transforming growth factor‐beta/Smad3 signaling pathway plays an important role in the osteogenic differentiation of adipose‐derived stem cells enhanced by monodispersed nanoparticles. This study may have important implications for better understanding of stem cells fate induced by monodispersed nanoparticles and provide a promising approach toward stem cells‐based bone regeneration.  相似文献   

12.
Curcumin (Curcuma longa L), a yellow‐colored Indian spice, receives immense attention for the prevention and treatment of various cancers. Despite the superlative therapeutic efficacy, its poor solubility and instability in the aqueous medium hinder the effectiveness of cancer treatment. The novel preparation of curcumin nanoparticles by mechanical grinding of curcumin crystals without any toxic organic solvents is described here for the first time. The surface of curcumin nanoparticles is modified with the negatively charged polyelectrolyte poly(sodium 4‐strynesulfonate) through hydrogen bonding, which is the key to increasing the solubility and stability in the aqueous medium. The negative surface charge is exploited to conjugate doxorubicin drug molecule on the surface of curcumin nanoparticles as evidenced by fluorescence quenching experiments. Doxorubicin‐conjugated curcumin nanoparticles have a higher solubility with an enhanced cytotoxic effect toward the human hepatocellular carcinoma cell line by a reactive‐oxygen‐species‐mediated p53‐dependent apoptotic pathway. The combination of chemotherapy and photodynamic therapy significantly enhances antitumor activity of doxorubicin‐conjugated curcumin nanoparticles, and is expected to be a promising anticancer agent with special reference to human liver carcinoma cells.  相似文献   

13.
In the current study, the cytotoxic effects induced by the given photosensitizer (PS) on human rhybdomyosarcoma cancer cells (RD) as an experimental model were investigated. The experimental results like cytotoxic effects induced by the given PS on RD cells were dose dependent and the optimum concentration of Photofrin® (100 μg/ml) along with 120 J/cm2 generates the maximum loss in cell viability which is almost 82%. The significant loss in cell viability is the result of interaction of suitable dose of laser light (630 nm of wavelength) with Photofrin®, after excitation of PS, production of reactive oxygen species (ROS), which leads to mitochondria damage and resulting of cell death (cell necrosis/cell apoptosis). Viability of controlled and treated RD cells with optimum dose of light (630 nm) has been assessed by neutral red assay (NRA) and cell damaging effect were verified by staining of mitochondria using Mitotracker® red as an efficient dye as well as reactive oxygen species (ROS) accumulation detection.  相似文献   

14.
Mesoporous silica nanoparticles (MSNs), that are capable of delivering gene and drugs to organisms in an effective and selective way have attracted much attention lately for its potential in the treatment of cancer. However, the successful application of MSNs for delivery of plasmid DNA or drugs requires surface modification of the silica with positively charged functional groups so that it binds to the negatively charged nucleic acids and also helps it penetrate through the cell membrane. We report for the first time the synthesis of a hybrid MSN where the cell penetrating cationic polypeptide poly‐L‐arginine synthesized by NCA polymerization is grafted onto the external surface of MSN using click chemistry. These poly‐L‐arginine grafted MSNs show low cytotoxity (85% cell viability at 100 μg/mL MSN concentration) and high cellular uptake by both HeLa and A549 (>90%). The poly‐L‐arginine grafted MSNs were used effectively to deliver mCherry DNA plasmid into cells leading to expression of the protein mCherry inside the cells (transfection efficiency 60%). In contrast, poly‐L‐arginine grafted non‐porous silica nanoparticles were unable to express the protein mCherry inside the cells although their uptake into the cells was as efficient as with poly‐L‐arginine grafted MSNs. We also show preliminary results to demonstrate that these hybrid MSNs can be used as a delivery vehicle for the anticancer drug Doxorubicin towards cancerous cells HeLa and A549. The biocompatibility of poly‐L‐arginine and its cell penetrating ability are expected to make these MSN conjugates very useful carriers for the delivery of genes and drugs into cancer cells.  相似文献   

15.
This work reports an efficient and straightforward strategy to fabricate hybrid microsized containers with reduction‐sensitive and ultrasound‐responsive properties. The ultrasound and reductive sensitivity are visualized using scanning electron microscopy, with the results showing structural decomposition upon ultrasound irradiation and in the presence of reducing agent. The ultrasound‐responsive functionalities of hybrid carriers can be used as external trigger for rapid controlled release, while prolonged drug release can be achieved in the presence of reducing agent. To evaluate the potential for targeted drug delivery, hybrid microsized containers are loaded with the anticancer drug doxorubicin (Dox). Such hybrid capsules can undergo structural intracellular degradation after cellular uptake by human cervical cancer cell line (HeLa), resulting in Dox release into cancer cells. In contrast, there is no Dox release when hybrid capsules are incubated with human mesenchymal stem cells (MSCs) as an example of normal human cells. The cell viability results indicate that Dox‐loaded capsules effectively killed HeLa cells, while they have lower cytotoxicity against MSCs as an example of healthy cells. Thus, the newly developed intracellular‐ and ultrasound‐responsive microcarriers obtained via sol‐gel method and layer‐by‐layer technique provide a high therapeutic efficacy for cancer, while minimizing adverse side effect.  相似文献   

16.
Here, we present a thorough study of pegylated silica nanoparticle (SNP) interaction with different biological environments. The SNPs have a mean diameter of about 40 nm and are coated with polyethylene glycol (PEG) of different molecular weights. The physicochemical characterization of SNPs allowed the confirmation of the binding of PEG chains to the silica surface, the reproducibility of the synthesis and the narrow size-dispersion. In view of clarifying the SNP interaction with biological environments, we first assessed the SNP reactivity after the incubation with two cell lines (macrophages RAW 264.7 and primary human fibroblasts), observing a reduced toxicity of pegylated SNPs compared to the bare ones. Then, we investigated the effect of the protein adsorption on the SNP surface using the model serum protein, bovine serum albumin (BSA). We found that the protein adsorption takes place more heavily on poorly pegylated SNPs, promoting the uptake of the latter by macrophages and leading to an increased mortality of these cells. To better understand this mechanism by means of flow cytometry, the dye Ru(bpy)3Cl2 was incorporated in the SNPs. The overall results highlight the SNP potentialities as a drug delivery system, thanks to the low interactions with the macrophages.  相似文献   

17.
We examined intracellular pH (pHi) of ten cancer cell lines derived from different organs and two normal cell lines including human embryonic lung fibroblast cells (HEL) and human umbilical vein endothelial cells (HUVEC) in vitro, and found that pHi of most of these cancer cells was evidently higher (pH 7.5 to 7.7) than that of normal cells (7.32 and 7.44 for HEL and HUVEC, respectively) and that of primary leukemic cells and erythrocytes hitherto reported (≤7.2). Higher pHi in these cancer cells could be related to the Warburg effect in cancer cells with enhanced glycolytic metabolism. Since reversal of the Warburg effect may perturb intracellular homeostasis in cancer cells, we looked for compounds that cause extensive reduction of pHi, a major regulator of the glycolytic pathway and its associated metabolic pathway. We found that phenoxazine compounds, 2-aminophenoxazine-3-one (Phx-3) and 2-amino-4,4α-dihydro-4α,7-dimethyl-3H-phenoxazine-3-one (Phx-1) caused a rapid and drastic dose-dependent decrease of pHi in ten different cancer cells within 30 min, though the extent of the decrease of pHi was significantly larger for Phx-3 (ΔpHi = 0.6 pH units or more for 100 μM Phx-3) than for Phx-1 (ΔpHi = 0.1 pH units or more for 100 μM Phx-1). This rapid and drastic decrease of pHi in a variety of cancer cells caused by Phx-3 and Phx-1 possibly perturbed their intracellular homeostasis, and extensively affected the subsequent cell death, because these phenoxazines exerted dose-dependent proapoptotic and cytotoxic effects on these cells during 72 h incubation, confirming a causal relationship between ΔpHi and cytotoxic effects due to Phx-3 and Phx-1. Phx-3 and Phx-1 also reduced pHi of normal cells including HEL and HUVEC, although they exerted less proapoptotic and cytotoxic effects on these cells than on cancer cells. Drugs such as Phx-3 and Phx-1 that reduce pHi and thereby induce cellular apoptosis might serve as benevolent anticancer drugs.  相似文献   

18.
In this paper, fluorescent carbon dots (CDs) loaded on silica (SiO2) spheres are synthesized by the one‐pot hydrothermal route, and then folic acids (FA) are covalently conjugated on the surface of SiO2 spheres. The formed SiO2@CDs‐FA composites can target specific tissues, e.g., cancer. The key of this method is the employment of (3‐aminopropyl)trimethoxysilane as bridge joint, which not only serves as surface passivation agents allowing the large scale synthesis of CDs with high quantum yield, but also enables SiO2@CDs composites further covalent conjugation of FA. The resultant SiO2@CDs composites have many advantages such as easy separation and purification, highly stable, well water‐soluble, and biocompatible. Moreover, the SiO2@CDs‐FA could be used as fluorescent probes for biological imaging in vitro. The uptake of the SiO2@CDs‐FA into HeLa cells is receptor‐mediated endocytosis, which is confirmed by a comparative study using FR‐negative 293T cells. Findings from this study suggest that the SiO2@CDs‐FA composites could be used as a platform for cancer diagnosis studies in various biological systems.  相似文献   

19.
7‐R‐9‐ethyl‐6,9‐dihydro‐6‐oxo‐[1,2,5]selenadiazolo[3,4‐h]quinolines (R = H, COOC2H5, COOCH3, COOH and COCH3, E1h , E2h , E3h , E4h , E5h ) and 6‐ethyl‐6,9‐dihydro‐9‐oxo‐[1,2,5]selenadiazolo[3,4‐f]quinoline ( E1f ) were characterized by UV/vis, FT‐IR and fluorescence spectroscopy. The electronic absorption spectra of the derivatives E1h , E2h , E3h and E5h in the aprotic solvents dimethylsulfoxide (DMSO) and acetonitrile (ACN) reveal low‐energy absorption maxima with λmax > 400 > nm, shifted hypsochromically in water. In DMSO, N‐ethyl selenadiazoloquinolones behave as strong fluorescent agents (λem ≥ 550 nm) with the exception of the carboxylic acid derivative E4h which shows only poor emission. Photoinduced reactions of N‐ethyl selenadiazoloquinolones were investigated by means of electron paramagnetic resonance (EPR) spectroscopy. Photoexcitation of N‐ethyl selenadiazoloquinolones in aerated DMSO with either 385 nm or 400 nm wavelengths, monitored by EPR spin trapping technique, results in the generation of superoxide radical anions; under an inert atmosphere, the generation of methyl radicals originating from the solvent predominates. Upon exposure at either 365 nm, 385 nm or 400 nm, aerated ACN solutions of selenadiazoloquinolones in the presence of sterically hindered amines produce nitroxide radicals via a reaction with photogenerated singlet oxygen. The 7‐substituted derivatives of 9‐ethyl‐6,9‐dihydro‐6‐oxo‐[1,2,5]selenadiazolo[3,4‐h]quinoline behave as photosensitizers activating molecular oxygen upon photoexcitation and possess the sufficient photochemical stability under the given experimental conditions. The cytotoxic effects of non‐photoactivated and UVA photoactivated N‐ethyl substituted selenadiazoloquinolones on cancer (human HeLa and murine L1210) and non‐cancer (NIH‐3T3) cell lines were monitored by the MTT test. The derivative E2h demonstrates the highest cytotoxic/photocytotoxic activity on the neoplastic cell lines. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Polyol synthesis is a promising method to obtain directly pharmaceutical grade colloidal dispersion of superparamagnetic iron oxide nanoparticles (SPIONs). Here, we study the biocompatibility and performance as T2-MRI contrast agents (CAs) of high quality magnetic colloidal dispersions (average hydrodynamic aggregate diameter of 16-27 nm) consisting of polyol-synthesized SPIONs (5 nm in mean particle size) coated with triethylene glycol (TEG) chains (TEG-SPIONs), which were subsequently functionalized to carboxyl-terminated meso-2-3-dimercaptosuccinic acid (DMSA) coated-iron oxide nanoparticles (DMSA-SPIONs). Standard MTT assays on HeLa, U87MG, and HepG2 cells revealed that colloidal dispersions of TEG-coated iron oxide nanoparticles did not induce any loss of cell viability after 3 days incubation with dose concentrations below 50 μg Fe/ml. However, after these nanoparticles were functionalized with DMSA molecules, an increase on their cytotoxicity was observed, so that particles bearing free terminal carboxyl groups on their surface were not cytotoxic only at low concentrations (<10 μg Fe/ml). Moreover, cell uptake assays on HeLa and U87MG and hemolysis tests have demonstrated that TEG-SPIONs and DMSA-SPIONs were well internalized by the cells and did not induce any adverse effect on the red blood cells at the tested concentrations. Finally, in vitro relaxivity measurements and post mortem MRI studies in mice indicated that both types of coated-iron oxide nanoparticles produced higher negative T2-MRI contrast enhancement than that measured for a similar commercial T2-MRI CAs consisting in dextran-coated ultra-small iron oxide nanoparticles (Ferumoxtran-10). In conclusion, the above attributes make both types of as synthesized coated-iron oxide nanoparticles, but especially DMSA-SPIONs, promising candidates as T2-MRI CAs for nanoparticle-enhanced MRI diagnosis applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号