首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 129 毫秒
1.
3D vertically aligned carbon nanotubes (CNTs)/NiCo2O4 core/shell structures are successfully synthesized as binder‐free anode materials for Li‐ion batteries (LIBs) via a facile electrochemical deposition method followed by subsequent annealing in air. The vertically aligned CNTs/NiCo2O4 core/shell structures are used as binder‐free anode materials for LIBs and exhibit high and stable reversible capacity (1147.6 mAhg?1 at 100 mAg?1), excellent rate capability (712.9 mAh g?1 at 1000 mAg?1), and good cycle stability (no capacity fading over 200 cycles). The improved performance of these LIBs is attributed to the unique 3D vertically aligned CNTs/NiCo2O4 core/shell structures, which support high electron conductivity, fast ion/electron transport in the electrode and at the electrolyte/electrode interface, and accommodate the volume change during cycling. Furthermore, the synthetic strategy presented can be easily extended to fabricate other metal oxides with a controlled core/shell structure, which may be a promising electrode material for high‐performance LIBs.  相似文献   

2.
Iron sulfides are attractive anode materials for lithium‐ion batteries (LIBs) and sodium‐ion batteries (SIBs) due to their high theoretical capacities, low cost, and eco‐friendliness. However, their real application is greatly hindered by the rapid capacity fading caused by the large volume changes and sluggish kinetics of iron sulfides during the charge and discharge processes. Combining with carbonaceous materials and tuning the structure at nanoscale are essential to address this issue. Here, a facile hydrothermal method coupled with a carbonization process is developed to synthesize a nano‐micro hybrid porous structure, which is composed of Fe7S8 nanoparticles embedded in nitrogen‐doped carbon framework (Fe7S8@NC‐PS). This hierarchical sphere is constructed by interconnected 2D nanowalls. The as‐prepared Fe7S8@NC‐PS electrodes reveal excellent rate capability and cycling stability in LIBs and SIBs. The remarkable electrochemical properties are attributed to the porous nano‐micro hybrid architecture and the high conductivity and structural stability of the nitrogen‐doped carbon framework.  相似文献   

3.
The nanostructured Na3V2(PO4)3 (NVP) cathode material has been synthesized using the sol-gel route for different molar fractions of citric acid as a carbon source during the synthesis. The nanostructured NVP as cores with carbonic shell structures are fabricated with two different citric acid molar ratios. The thermal treatment has been optimized to convert the amorphous carbon shell into graphitic carbon to realize the better electrical conductivity and thus effective electron transfer during the electrochemical charge transfer process. The X-ray diffraction measurements confirmed the rhombohedral crystallographic phase (space group R-3c) with average crystallite size ~28 ± 5 nm. The coin cells are assembled in a hybrid rechargeable electrochemical cell configuration with lithium as a counter electrode and LiPF6-EC:DEC:DMC (1:1:1 ratio) as the electrolyte. The electrochemical charge/discharge measurements are carried out at C/10 and C/20 rates and the measured specific capacities are 80 and 120 mAhg?1 for samples with lower and higher citric acid molar ratios, respectively. The studies suggest that NVP can be used as an effective cathode material in hybrid electrochemical cells, and a higher concentration of citric acid may result in the effective carbonic shell for optimal electron transfer and thus enhanced electrochemical performance.  相似文献   

4.
Lithium vanadium-borate glasses with the composition of 0.3Li2O–(0.7-x)B2O3xV2O5 (x?=?0.3, 0.325, 0.35, 0.375, 0.4, 0.425, 0.45, and 0.475) were prepared by melt-quenching method. According to differential scanning calorimetry data, vanadium oxide acts as both glass former and glass modifier, since the thermal stability of glasses decreases with an increase in V2O5 concentration. Fourier transform infrared spectroscopy data show that the vibrations of [VO4] structural units occur at V2O5 concentration of 45 mol%. It is established that the concentration of V4+ ions increases exponentially with the growth of vanadium oxide concentration. Direct and alternative current measurements are carried out to estimate the contribution both electronic and ionic conductivities to the value of total conductivity. It is shown that the electronic conductivity is predominant in the total one. The glass having the composition of 0.3Li2O-0.275B2O3-0.475V2O5 shows the highest electrical conductivity that has the value of 7.4?×?10?5 S cm?1 at room temperature.  相似文献   

5.
崔万秋  阮立坚 《物理学报》1987,36(3):322-331
本文对Li2O-P2O5-V2O5系统非晶态中的几组试样进行了电导率、核磁共振及顺磁共振测试。实验分析表明非晶态的log(σΤ)-1/Τ曲线都是由两个直线段构成。电导率在转变温度以后的“晶化前期”异常增大,这归因于该阶段非晶态结构有序化程度增加所致,利用ESR实验结果对非晶态进行钒离子价态分析表明,该系统非晶态中钒离子仅以V4+和V5+状态存在。固定P< 关键词:  相似文献   

6.
V2O5 nanoneedle arrays were grown directly on titanium (Ti) substrate by a facile solvothermal route followed with calcination at 350 °C for 2 h. The as-prepared V2O5 nanoneedles are about 50 nm in diameter and 800 nm in length. The electrochemical behavior of V2O5 nanoarrays as binder-free cathode for lithium-ion batteries (LIBs) was evaluated by cyclic voltammetry and galvanostatic discharge/charge tests. Compared with V2O5 powder electrode, V2O5 nanoneedle arrays electrode exhibited improved electrochemical performance in terms of high discharge capacity of 262.5 mA h g?1 between 2.0 and 4.0 V at 0.2 C, and high capacity retention up to 77.1% after 100 cycles. Under a high current rate of 2 C, a discharge capacity of about 175.6 mA h g?1 can be maintained. The enhanced performance are mainly due to the intimate contact between V2O5 nanoneedle active material and current collector, which enable shortened electron transfer pathway and improved charge transfer kinetics, demonstrating their potential applications in high rate electrochemical storage devices.  相似文献   

7.
The effect of foreign oxide additions on the electrical conductivity of L-Ta2O5 is discussed. It is concluded that lower valent oxides have no doping effect (i.e. increased and extended ionic conductivity by substitutional dissolution of lower valent cations) on L-Ta2O5. The conductivity data have been interpreted in terms of different dispersion models reflecting conduction in a mixture of L-Ta2O5 and tantalate phases.  相似文献   

8.
Li3V2(PO4)3 glass-ceramic nanocomposites, based on 37.5Li2O-25V2O5-37.5P2O5 mol% glass, were successfully prepared via heat treatment (HT) process. The structure and morphology were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). XRD patterns exhibit the formation of Li3V2(PO4)3 NASICON type with monoclinic structure. The grain sizes were found to be in the range 32–56 nm. The effect of grain size on the dynamics of Li+ ions in these glass-ceramic nanocomposites has been studied in the frequency range of 20 Hz–1 MHz and in the temperature range of 333–373 K and analyzed by using both the conductivity and modulus formalisms. The frequency exponent obtained from the power law decreases with the increase of temperature, suggesting a weaker correlation among the Li+ ions. Scaling of the conductivity spectra has also been performed in order to obtain insight into the relaxation mechanisms. The imaginary modulus spectra are broader than the Debye peak-width, but are asymmetric and distorted toward the high frequency region of the maxima. The electric modulus data have been fitted to the non-exponential Kohlrausch–Williams–Watts (KWW) function and the value of the stretched exponent β is fairly low, suggesting a higher ionic conductivity in the glass and its glass-ceramic nanocomposites. The advantages of these glass-ceramic nanocomposites as cathode materials in Li-ion batteries are shortened diffusion paths for Li+ ions/electrons and higher surface area of contact between cathode and electrolyte.  相似文献   

9.
通过V2O5的碳热还原反应制备了具有优异倍率性能和循环稳定性的V2O3-C双层包覆的磷酸铁锂正极材料. 粉末X射线衍射、元素分析、高分辨投射电镜和拉曼光谱研究表明V2O3相与碳层共包覆于磷酸铁锂颗粒表面. 在V2O5的碳热还原反应后,碳含量明显降低,但石墨化程度未发生明显改变. 电化学测试结果表明少量V2O3显著改善了磷酸铁锂正极材料的倍率性能和高温循环性能,包含1%氧化钒的复合正极材料在0.2 C放电容量为167 mAh/g,5 C时放电容量为129 mAh/g,并且循环稳定性优异;在55 oC和1 C时放电容量为151 mAh/g,循环100次后无明显容量衰减.  相似文献   

10.
Titanium dioxide (TiO2)-based materials have been well studied because of the high safety and excellent cycling performance when employed as anode materials for lithium ion batteries (LIBs), whereas, the relatively low theoretical capacity (only 335 mAh g?1) and serious kinetic problems such as poor electrical conductivity (~?10?13S cm?1) and low lithium diffusion coefficient (~?10?9 to 10?13 cm2 s?1) hinder the development of the TiO2-based anode materials. To overcome these drawbacks, we present a facile strategy to synthesize N/S dual-doping carbon framework anchored with TiO2 nanoparticles (NSC@TiO2) as LIBs anode. Typically, TiO2 nanoparticles are anchored into the porous graphene-based sheets with N, S dual doping feature, which is produced by carbonization and KOH activation process. The as-obtained NSC@TiO2 electrode exhibits a high specific capacity of 250 mAh g?1 with a coulombic efficiency of 99% after 500 cycles at 200 mA g?1 and excellent rate performance, indicating its promising as anode material for LIBs.  相似文献   

11.
S/Li4Ti5O12 cathode with high lithium ionic conductivity was prepared for Li-S battery. Herein, nano Li4Ti5O12 is used as sulfur host and fast Li+ conductor, which can adsorb effectively polysulfides and improve remarkably Li+ diffusion coefficient in sulfur cathode. At 0.5 C, S/Li4Ti5O12 cathode has a stable discharge capacity of 616 mAh g?1 at the 700th cycle and a capacity loss per cycle of 0.0196% from the second to the 700th cycle, but the corresponding values of S/C cathode are 437 mAh g?1 and 0.0598%. Even at 2 C, the capacity loss per cycle of S/Li4Ti5O12 cathode is only 0.0273% from the second to the 700th cycle. The results indicate that Li4Ti5O12 as the sulfur host plays a key role on the high performance of Li-S battery due to reducing the shuttle effect and enhancing lithium ionic conductivity.  相似文献   

12.
The electrical conductivity of V3O5 single crystals has been investigated over a wide temperature range, including the region of existence of the metallic phase and the region of the transition from the metallic phase to the insulating phase. It has been shown that the low electrical conductivity of metallic V3O5 is caused, on the one hand, by a lower concentration of electrons and, on the other hand, by a strong electronelectron correlation whose role with decreasing temperature increases as the phase transition temperature is approached. The temperature dependence of the electrical conductivity of the insulating phase of V3O5 has been explained in the framework of the theory of hopping conduction, which takes into account the effect of thermal vibrations of atoms on the resonance integral.  相似文献   

13.
The electrical transport properties were investigated of a glass system of basic composition 50?mol. % Pb3O4–50?mol. % P2O5 containing CoO, Cr2O3 or V2O5 dopanys. The ac conductivity and the thermoelectric power were measured as a function of temperature. Properties such as dielectric constant, loss factor tangent and electrical conductivity are reported in the frequency range 200?Hz–100?kHz and temperature range 300–450?K. The variation in electrical conductivity with temperature was found to depend on the types of transition metal ions involved. The temperature dependence of the frequency exponent, s, was analyzed using different theoretical models. The variation of the thermoelectric power with temperature indicated the presence of more than one conduction mechanism for the investigated samples. This result was confirmed with the results of the dielectric properties at different frequencies. The introduction of cobalt ions in glass formers improves the electrical properties of non-crystalline ionic conductors.  相似文献   

14.
The exploration of high‐energy and stable cathode materials is highly desirable and challenging for the development of advanced Zn‐based batteries. In this work, a facile pyrolysis method is reported to synthetize Ni3S2/carbon nanocomposite as high‐performance cathode by employing ion exchange resin as a precursor. Attributing to the abundant active sites and enhanced conductivity from well binding between Ni3S2 and carbon, a markedly high capacity of 234.3 mA h g?1 is obtained for this Ni3S2/carbon at a high current density of 6.9 A g?1. Moreover, a Zn‐based battery is demonstrated by using the Ni3S2/carbon as a cathode and Zn plate as an anode, which delivers a maximum power density of 58.6 kW kg?1, together with a peak energy density of 356 W h kg?1 and 93.7% capacity retention after 5000 charging–discharging cycles. This simple synthetic strategy to achieve robust Ni‐based composite electrodes may open up new opportunities to design other transition metal–based electrodes for energy storage applications.  相似文献   

15.
An electronically conducting nanomaterial was synthesized by nanocrystallization of a 90V2O5·10P2O5 glass and its electrical properties were studied in an extended temperature range from − 170 to + 400 °C. The conductivity of the prepared nanomaterial reaches 2 ? 10− 1 S cm− 1 at 400 °C and 2 ? 10− 3 S cm− 1 at room temperature. It is higher than that of the original glass by a factor of 25 at room temperature and more than 100 below − 80 °C. A key role in the conductivity enhancement was ascribed to the material's microstructure, and in particular to the presence of the large number of small (ca. 20 nm) grains of crystalline V2O5. The observed conductivity dependencies are discussed in terms of the Mott's theory of the electronic hopping transport in disordered systems. Since V2O5 is known for its ability to intercalate lithium, the presented results might be helpful in the development of cathode materials for Li-ion batteries.  相似文献   

16.
A facile strategy is developed to fabricate bicomponent CoO/CoFe2O4‐N‐doped graphene hybrids (CoO/CoFe2O4‐NG). These hybrids are demonstrated to be potential high‐performance anodes for lithium‐ion batteries (LIBs). The CoO/CoFe2O4 nanoplatelets are finely dispersed on the surface of N‐doped graphene nanosheets (CoO/CoFe2O4‐NG). The CoO/CoFe2O4‐NG electrode exhibits ultrahigh specific capacity with 1172 mA h g?1 at 500 mA g?1 and 970 mA h g?1 at 1000 mA g?1 as well as excellent cycle stability due to the synergetic effects of N‐doped graphene and CoO/CoFe2O4 nanoplatelets. The well‐dispersed bicomponent CoO/CoFe2O4 is responsible for the high specific capacity. The N‐doped graphene with high specific surface area has dual roles: to provide active sites for dispersing the CoO/CoFe2O4 species and to function as an electrical conducting matrix for fast charge transfer. This method provides a simple and efficient way to configure the hybridized electrode materials with high lithium storage capacity.  相似文献   

17.
18.
This study presents a general approach for the synthesis of carbon‐encapsulated wire‐in‐tube Co3O4/MnO2 heterostructure nanofibers (Co3O4/MnO2@C) via electrospinning followed by calcination. The as‐synthesized Co3O4/MnO2@C is investigated as the sodium‐ion batteries anode material, which not only exhibits a high reversible capacity of 306 mAh g−1 at 100 mA g−1 over 200 cycles, but also shows a cycling stability of 126 mAh g−1 after 1000 cycles at a high current density of 800 mA g−1. The excellent electrochemical performance can be ascribed to the contribution from carbon‐encapsulated outer‐tube Co3O4 and inner‐wire MnO2 heterostructures, which offer a large internal space and good electrical conductivity. The present work can be helpful in providing new insights into heterostructures for sodium‐ion batteries and other applications.  相似文献   

19.
In recent years Al2O3 has received tremendous interest in the photovoltaic community for the application as surface passivation layer for crystalline silicon. Especially p‐type c‐Si surfaces are very effectively passivated by Al2O3, including p‐type emitters, due to the high fixed negative charge in the Al2O3 film. In this Letter we show that Al2O3 prepared by plasma‐assisted atomic layer deposition (ALD) can actually provide a good level of surface passivation for highly doped n‐type emitters in the range of 10–100 Ω/sq with implied‐Voc values up to 680 mV. For n‐type emitters in the range of 100–200 Ω/sq the implied‐Voc drops to a value of 600 mV for a 200 Ω/sq emitter, indicating a decreased level of surface passivation. For even lighter doped n‐type surfaces the passivation quality increases again to implied‐Voc values well above 700 mV. Hence, the results presented here indicate that within a certain doping range, highly doped n‐ and p‐type surfaces can be passivated simultaneously by Al2O3. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Materials with the scheelite structure exhibit mixed ionic and electronic conductivity, and are of interest as oxidation catalysts. Scheelite materials, with the general composition ABO4 are also possible candidates for use as electrolytes or cathode materials in solid oxide fuel cells. Our work on the scheelite system, based on BiVO4, shows that both ionic and electronic components of the conductivity can be modified by doping this material. Both A and B site doping have been investigated in the range of 5 mol% dopant concentration. The A cation was replaced by Ca2+ and Ce4+, and the B site by Mn4+ and Mo6+. The phase purity was verified by XRD methods. The total and partial conductivities of pure and doped BiVO4 were investigated by use of the emf technique and ac impedance spectroscopy. Measurements were made between 550° C and 700° C and the oxygen gradient in the emf cell was established by oxygen and air gas flows with specified flow rates and oxygen partial pressure. Paper presented at the 1st Euroconference on Solid State Ionics, Zakynthos, Greece, 11 – 18 Sept. 1994.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号