首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phase behavior of thin‐film blends of polystyrene (PS) and the random copolymer poly(styrene‐co‐4‐bromostyrene) (PBS) was studied with atomic force microscopy (AFM) and small‐angle X‐ray scattering (SAXS). Phase behavior was studied as a function of the PBS and PS degree of polymerization (N), degree of miscibility [controlled via the volume fraction of bromine in the copolymer (f)], and annealing conditions. The Flory–Huggins interaction parameter χ was measured directly from SAXS as a function of temperature and scaled with f as χ = f2χS–BrS [where χS–BrS represents the segmental interaction between PS and the homopolymer poly(4‐bromostyrene)] Simulations based on the Flory–Huggins theory and χ measured from SAXS were used to predict phase diagrams for all the systems studied. The PBS/PS system exhibited upper critical solution temperature behavior. The AFM studies showed that increasing f in PBS led to progressively different morphologies, from flat topography (i.e., one phase) to interconnected structures or islands. In the two‐phase region, the morphology was a strong function of N (due to changes in mobility). A comparison of the estimated PBS volume fractions from the AFM images with the PBS bulk volume fraction in the blend suggested the encapsulation of PBS in PS, supporting the work of previous researchers. Excellent agreement between the phase diagram predictions (based on χ measured by SAXS) and the AFM images was observed. These studies were also consistent with interdiffusion measurements of PBS/PS interfaces (with Rutherford backscattering spectroscopy), which indicated that the interdiffusion coefficient decreased with increasing χ in the one‐phase region and dropped to zero deep inside the two‐phase region. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 255–271, 2002  相似文献   

2.
A series of amphiphilic silica/fluoropolymer nanoparticles of SiO2g‐P(PEGMA)‐b‐P(12FMA) were prepared by silica surface‐initiating atom transfer radical polymerization (SI‐ATRP) of poly(ethylene glycol) methyl ether methacrylate (PEGMA) and poly dodecafluoroheptyl methacrylate (P12FMA). Their amphiphilic behavior, lower critical solution temperature (LCST), and surface properties as protein‐resistance coatings were characterized. The introduction of hydrophobic P(12FMA) block leads SiO2‐g‐P(PEGMA)‐b‐P(12FMA) to form individual spherical nanoparticles (~150 nm in water and ~170 nm in THF solution) as P(PEGMA)‐b‐P(12FMA) shell grafted on SiO2 core (~130 nm), to gain obvious lower LCST at 36–52 °C and higher thermostability at 290–320 °C than SiO2‐g‐P(PEGMA) (LCST = 78–90 °C, Td = 220 °C). The water‐casted SiO2‐g‐P(PEGMA)‐b‐P(12FMA) films obtain much rougher surface (125.3–178.4 nm) than THF‐casted films (11.5–16.9 nm) and all SiO2‐g‐P(PEGMA) films (26.8–31.3 nm). Therefore, the water‐casted surfaces exhibit obvious higher water adsorption amount (Δf = ?494 ~ ?426 Hz) and harder adsorbed layer (viscoelasticity of ΔDf = ?0.28 ~ ?0.36 × 10?6/Hz) than SiO2‐g‐P(PEGMA) films, but present loser adsorbed layer than THF‐casted films (ΔDf = ?0.29 ~ ?0.63 × 10?6/Hz). While, the introduction of P(12FMA) segments does not show obviously reduce in the protein‐repelling adsorption of SiO2‐g‐P(PEGMA)‐b‐P(12FMA) films (△f = ?15.7 ~ ?22.3 Hz) compared with SiO2‐g‐P(PEGMA) films (△f = ?8.3 ~ ?11.3 Hz) and no obvious influence on water adsorption of ancient stone. Therefore, SiO2‐g‐P(PEGMA)‐b‐P(12FMA) is suggested to be used as protein‐resistance coatings. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 381–393  相似文献   

3.
The microphase structure of a series of polystyrene‐b‐polyethylene oxide‐b‐polystyrene (SEOS) triblock copolymers with different compositions and molecular weights has been studied by solid‐state NMR, DSC, wide and small angle X‐ray scattering (WAXS and SAXS). WAXS and DSC measurements were used to detect the presence of crystalline domains of polyethylene‐oxide (PEO) blocks at room temperature as a function of the copolymer chemical composition. Furthermore, DSC experiments allowed the determination of the melting temperatures of the crystalline part of the PEO blocks. SAXS measurements, performed above and below the melting temperature of the PEO blocks, revealed the formation of periodic structures, but the absence or the weakness of high order reflections peaks did not allow a clear assessment of the morphological structure of the copolymers. This information was inferred by combining the results obtained by SAXS and 1H NMR spin diffusion experiments, which also provided an estimation of the size of the dispersed phases of the nanostructured copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 55–64, 2010  相似文献   

4.
The pressure‐volume‐temperature (PVT) behavior and glass transition behavior of a 10 wt % silica nanoparticle‐filled polystyrene (PS) nanocomposite sample are measured using a custom‐built pressurizable dilatometer. The PVT data are fitted to the Tait equation in both liquid and glassy states; the coefficient of thermal expansion α, bulk modulus K, and thermal pressure coefficient γ are examined as a function of pressure and compared to the values of neat PS. The glass transition temperature (Tg) is reported as a function of pressure, and the limiting fictive temperature (Tf′) from calorimetric measurements is reported as a function of cooling rate. Comparison with data for neat PS indicates that the nanocomposite has a slightly higher Tg at elevated pressures, higher bulk moduli at all pressures studied, and its relaxation dynamics are more sensitive to volume. The results for the glassy γ values suggest that thermal residual stresses would not be reduced for the nanocomposite sample studied. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1131–1138  相似文献   

5.
Salt‐containing membranes based on polymethacrylates having poly(ethylene carbonate‐co‐ethylene oxide) side chains, as well as their blends with poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP), have been studied. Self‐supportive ion conductive membranes were prepared by casting films of methacrylate functional poly(ethylene carbonate‐co‐ethylene oxide) macromonomers containing lithium bis(trifluorosulfonyl)imide (LiTFSI) salt, followed by irradiation with UV‐light to polymerize the methacrylate units in situ. Homogenous electrolyte membranes based on the polymerized macromonomers showed a conductivity of 6.3 × 10?6 S cm?1 at 20 °C. The preparation of polymer blends, by the addition of PVDF‐HFP to the electrolytes, was found to greatly improve the mechanical properties. However, the addition led to an increase of the glass transition temperature (Tg) of the ion conductive phase by ~5 °C. The conductivity of the blend membranes was thus lower in relation to the corresponding homogeneous polymer electrolytes, and 2.5 × 10?6 S cm?1 was recorded for a membrane containing 10 wt % PVDF‐HFP at 20 °C. Increasing the salt concentration in the blend membranes was found to increase the Tg of the ion conductive component and decrease the propensity for the crystallization of the PVDF‐HFP component. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 79–90, 2007  相似文献   

6.
A series of branched/crosslinked sulfonated polyimide (B/C‐SPI) membranes were prepared and evaluated as proton‐conducting ionomers based on the new concept of in situ crosslinking from sulfonated polyimide (SPI) oligomers and triamine monomers. Chemical branching and crosslinking in SPI oligomers with 1,3,5‐tris(4‐aminophenoxy)benzene as a crosslinker gave the polymer membranes very good water stability and mechanical properties under an accelerated aging treatment in water at 130 °C, despite their high ion‐exchange capacity (2.2–2.6 mequiv g?1). The resulting polymer electrolytes displayed high proton conductivities of 0.2–0.3 S cm?1 at 120 °C in water and reasonably high conductivities of 0.02–0.03 S cm?1 at 50% relative humidity. In a single H2/O2 fuel‐cell system at 90 °C, they exhibited high fuel‐cell performances comparable to those of Nafion 112. The B/C‐SPI membranes also displayed good performances in a direct methanol fuel cell with methanol concentrations as high as 50 wt % that were superior to those of Nafion 112. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3751–3762, 2006  相似文献   

7.
A series of thermoresponsive polymer gel electrolytes (PGEs) based on poly(N‐isopropylacrylamide) in aqueous potassium chloride was synthesized by radiation‐induced polymerization and gelation using γ rays from a 60Co source. The electric conductivity and swelling properties of the PGE were determined as a function of temperature. It was found that the electric conductivity of the PGE depended strongly on the swelling ratio; most notably, it changed drastically near the volume phase‐transition temperature of the PGE. The temperature/conductivity profile of the PGE exhibits a maximum peak at a certain temperature that is defined as the maximum conductivity temperature (Tmax). The Tmax of all of the PGEs prepared by low‐dose irradiation agreed with the temperature, near the end of the volume phase transition, where the PGE was completely shrunken. Consequently, the conductivity of gels should provide a good method with which the totally shrunken temperature of the thermoresponsive gels can be monitored with good temperature precision. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 134–141, 2002  相似文献   

8.
A new bisphenol monomer containing a pair of electron‐rich tetra‐arylmethane units was designed and synthesized. Based on this monomer, along with commercial 4,4′‐(hexafluoroisopropylidene)diphenol A and 4,4′‐difluorobenzophenone, a series of novel poly(arylene ether ketone)s containing octasulfonated segments of varying molar percentage (x) (6F‐SPAEK‐x) were successfully synthesized by polycondensation reactions, followed by sulfonation. Tough, flexible, and transparent membranes, exhibiting excellent thermal stabilities and mechanical properties were obtained by casting. 6F‐SPAEK‐x samples exhibited appropriate water uptake and swelling ratios at moderate ion exchange capacities (IECs) and excellent proton conductivities. The highest proton conductivity (215 mS cm−1) is observed for hydrated 6F‐SPAEK‐15 (IEC = 1.68 meq g−1) at 100 °C, which is more than 1.5 times that of Nafion 117. Furthermore, the 6F‐SPAEK‐10 membrane exhibited comparable proton conductivity (102 mS cm−1) to that of Nafion 117 at 80 °C, with a relatively low IEC value (1.26 meq g−1). Even under 30% relative humidity, the 6F‐SPAEK‐20 membrane (2.06 meq g−1) showed adequate conductivity (2.1 mS cm−1) compared with Nafion 117 (3.4 mS cm−1). The excellent comprehensive properties of these membranes are attributed to well‐defined nanophase‐separated structures promoted by strong polarity differences between highly ionized and fluorinated hydrophobic segments. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 25–37  相似文献   

9.
Amphiphilic polybutadiene polyethylene oxide (PB‐PEO) is one of the best known chemistries to form stable vesicular morphologies, stated as polymersomes, in aqueous environment. Mimicking cell membranes, these structures self‐assemble in an “amphiphilic window” determined by 0.15 < f < 0.35 where f is the ratio between the hydrophilic block volume and the entire diblock volume. However the polymersome size distribution also depends on molecular weight (Mn) and in order to gain insight on how f and Mn together determine polymersome size, we prepared PB‐PEO diblock copolymers with different block lengths and analyzed vesicle morphology via Dynamic light scattering (DLS) and Freeze‐fracture transmission electron microscopy (FF‐TEM). We found three main regimes: high f / low Mn with polymersomes of mixed diameter, high f / high Mn with mainly large polymersomes and low f, with mainly small polymersomes. In the first region, the polymersomes are highly polydisperse. There is a tendency towards increased diameter with increasing f and Mn. Taken together our findings can help to identify how polymersome self‐assembly can be controlled to achieve size distribution specificity alleviating the need for subsequent tuning of size via extrusion. This can pave the way for cost‐effective upscaling of polymersome production for biomedical and biomimetic applications. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 699–708  相似文献   

10.
Modification of proton conductive channels (PCCs) in Nafion has been achieved with the assistance of 3, 4‐dimethylbenzaldehyde (DMBA). During annealing, ionic clusters develop from small isolated spheres (1.72 nm) to wide continuous channels (5.15 nm), and the crystallinity of Nafion/DMBA membranes is also improved from 17% to 32% as shown by X‐ray diffraction. Molecular dynamic simulation reveals that hydrogen bonding and hydrophobic interaction between DMBA and Nafion work synergistically to achieve better phase separation. The morphology–property relationship shows that, versus various PCCs width, the corresponding proton conductivities vary greatly from 0.079 to 0.139 S/cm at 80 °C. By carefully tuning the width of PCCs, the proton conductivity shows an improvement of 22–34% as compared with pristine Nafion. A significant enhancement on the maximum power density is achieved for the membrane electrode assembly on Nafion/DMBA‐8h (as high as 1018 mW/cm?2), yielding an enhancement of 39% on pristine Nafion‐8h (730 mW/cm?2). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 52, 1107–1117  相似文献   

11.
Random and block sulfonated poly(meta‐phenylene isopthalamide)s as proton exchange membranes were synthesized through the Higashi‐Yamazaki phosphorylation method. Polymers with different degrees of sulfonation from 40 to 100 mol percent were prepared by adjusting the molar feed ratio of 5‐sulfoisophthalic acid sodium salt (SIPA) and isophthalic acid (IPA) in the reaction with meta‐phenylene diamine. Creasable polymer films were obtained by casting DMSO polymer solutions and the membrane films could be exchanged to the proton form in strong acid. 1H NMR spectroscopy and titration confirmed the degree of sulfonation. Thermogravimetric analysis demonstrated good thermal stabilities with 5% weight loss greater than 380 °C. The copolymers with low degrees of sulfonation (DS = 40 mol %) exhibited low water uptake (water uptake < 17 wt %) at room temperature. A segmented multiblock copolymer prepared by preforming a sulfonated block showed lower water uptake at high temperatures than the random polymer with the same DS of 40 mol % and displayed stability in water up to 80 °C. Both random and block copolymers showed higher proton conductivities at high temperature than that of Nafion‐117 under 95% relative humidity. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2582–2592  相似文献   

12.
Small‐angle X‐ray scattering (SAXS) was used to obtain solution parameters of a weak polyelectrolyte in water in the absence of any additives, such as neutralizing agents or salt. Poly(acrylic acid) (PAA) was used as a weak polyelectrolyte from which SAXS data were obtained in the dilute region of 1–10 mg cm?3. An intrinsic viscosity of 15.7 dL g?1 was obtained from a plot of reciprocal reduced viscosities versus the concentration. The application of the SAXS data, that is, the contour length (L = 1.97 × 104 Å), the persistence length (a* = 58.5 Å), and the molecular weight (M = 5.9 × 105 Da), to the Yamakawa–Fujii equation suggested that PAA in water at 25 °C could be described as a wormlike chain having a cylindrical body of d = 6 Å. An end‐to‐end distance (r = 1.6 × 103 Å) was calculated from r = 2a*L ? 2(a*)2. The nonisotropic expansion factor (α = 2.9) was calculated for PAA expanding from the random coil in dioxane at 30 °C (Θ temperature) to the wormlike chain in water at 25 °C. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1263–1272, 2003  相似文献   

13.
A series of OEGylated poly(γ‐benzyl‐l ‐glutamate) with different oligo‐ethylene‐glycol side‐chain length, molecular weight (MW = 8.4 × 103 to 13.5 × 104) and narrow molecular weight distribution (PDI = 1.12–1.19) can be readily prepared from triethylamine initiated ring‐opening polymerization of OEGylated γ‐benzyl‐l ‐glutamic acid based N‐carboxyanhydride. FTIR analysis revealed that the polymers adopted α‐helical conformation in the solid‐state. While they showed poor solubility in water, they exhibited a reversible upper critical solution temperature (UCST)‐type phase behavior in various alcoholic organic solvents (i.e., methanol, ethanol, 1‐propanol, 1‐butanol, 1‐pentanol, and isopropanol). Variable‐temperature UV–vis analysis revealed that the UCST‐type transition temperatures (Tpts) of the resulting polymers were highly dependent on the type of solvent, polymer concentration, side‐ and main‐chain length. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1348‐1356  相似文献   

14.
A novel two‐phase polymer nanocomposite film comprising of polyvinylidene fluoride (PVDF) and nanocrystalline (~90 nm) semiconducting multiferroic BiFeO3 (BFO) have been fabricated by hot‐molding technique. Such flexible thick nanocomposite films, semicrystalline in nature, exhibited extraordinarily high effective dielectric permittivity εeff ~ 103 (compared with that of pure PVDF) near the low percolation threshold (fc = 0.12) at room temperature (RT) and the films also possessed low dielectric loss (~0.18). The polarization‐electric field (P‐E) hysteresis loops are displayed at RT, which indicate ferroelectric like behavior of PVDF still persists in the percolative nanocomposite. There is also large increase of remanent polarization of BFO in the composite indicating improvement of the multiferroic behavior of BFO embedded in the PVDF polymer. The sample also indicates good fatigue endurance. Formation of microcapacitors and percolative behavior are correlated to explain the obtained results based on the special geometry of the BFO nanofillers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

15.
An Erratum has been published for this article in J. Polym. Sci. Part A: Polym. Chem. (2004) 42(21) 5559 . The initiator efficiency, f, of 2,2′‐azobis(isobutyronitrile) (AIBN) in dodecyl acrylate (DA) bulk free‐radical polymerizations has been determined over a wide range of monomer conversion in high‐molecular‐weight regimes (Mn ? 106 g mol?1 [? 4160 units of DA)] with time‐dependent conversion data obtained via online Fourier transform near infrared spectroscopy (FTNIR) at 60 °C. In addition, the required initiator decomposition rate coefficient, kd, was determined via online UV spectrometry and was found to be 8.4 · 10?6 s?1 (±0.5 · 10?6 s?1) in dodecane, n‐butyl acetate, and n‐dodecyl acetate at 60 °C. The initiator efficiency at low monomer conversions is relatively low (f = 0.13) and decreases with increasing monomer to polymer conversions. The evolution of f with monomer conversion (in high‐molecular‐weight regimes), x, at 60 °C can be summarized by the following functionality: f60 °C (x) = 0.13–0.22 · x + 0.25 · x2 (for x ≤ 0.45). The reported efficiency data are believed to have an error of >50%. The ratio of the initiator efficiency and the average termination rate coefficient, 〈kt±, (f/〈kt〉) has been determined at various molecular weights for the generated polydodecyl acrylate (Mn = 1900 g mol?1 (? 8 units of DA) up to Mn = 36,500 g mol?1 (? 152 units of DA). The (f/〈kt〉) data may be indicative of a chain length‐dependent termination rate coefficient decreasing with (average) chain length. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5170–5179, 2004  相似文献   

16.
A new monomer 1,5‐bis(4‐fluorobenzoyl)‐2,6‐dimethoxynaphthalene (DMNF) was prepared and further polymerized to form naphthalene‐based poly(arylene ether ketone) copolymers containing methoxy groups (MNPAEKs). The side‐chain‐type sulfonated naphthalene‐based poly(arylene ether ketone) copolymers (SNPAEKs) were obtained by demethylation and sulfobutylation. Flexible and tough membranes with reasonably high mechanical strength were prepared. The SNPAEKs membrane showed anisotropic membrane swelling with larger swelling in thickness than in plane. Transmission electron microscopy (TEM) analysis revealed clear nanophase separated structure of SNPAEKs membranes, which composed of hydrophilic side chain and hydrophobic main‐chain domains. Proton conductivities of copolymers increased gradually with increase in temperature. The highest conductivity of 0.179 S/cm was obtained for SNPAEK‐80 (IEC = 1.82 mequiv/g) at 80 °C, which is higher than that of Nafion117 (0.146 S/cm). The SNPAEKs membranes exhibit the methanol permeability in the range of 3.42 × 10?8?4.49 × 10?7 cm2/s, which are much lower than that of Nafion117. They could be the promising materials as alternative to Nafion membrane for direct methanol fuel cells applications. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47:5772–5783, 2009  相似文献   

17.
An amorphous, organosoluble, fluorine‐containing polybenzimidazole (PBI) was synthesized from 3,3′‐diaminobenzidine and 2,2‐bis(4‐carboxyphenyl)hexafluoropropane. The polymer was soluble in N‐methylpyrrolidinone and dimethylacetamide and had an inherent viscosity of 2.5 dL/g measured in dimethylacetamide at a concentration of 0.5 g/dL. The 5% weight loss temperature of the polymer was 520 °C. Proton‐conducting PBI membranes were prepared via solution casting and doped with different amounts of phosphoric acid. In the methanol permeability measurement, the PBI membranes showed much better methanol barrier ability than a Nafion membrane. The proton conductivity of the acid‐doped PBI membranes increased with increasing temperatures and concentrations of phosphoric acid in the polymer. The PBI membranes showed higher proton conductivity than a Nafion 117 membrane at high temperatures. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4508–4513, 2006  相似文献   

18.
We investigate the morphology, segmental dynamics, and conductivity of 1‐ethyl‐3‐methylimidazolium trifluoromethanesulfonate (EMI‐Tf) swollen short side chain perfluorosulfonate ionomer (Aquivion) over a broad uptake range using small angle X‐ray scattering (SAXS), dielectric relaxation spectroscopy, and transient current measurement. The SAXS data indicate that the absorbed EMI‐Tf is mainly bounded in the ionic region of Aquivion. At low uptakes, EMI‐Tf acts as an effective plasticizer lowering the cluster Tg and markedly shifting the segmental relaxation to a high frequency; however, at high uptakes, the additional EMI‐Tf acts like a filler instead. A time–domain model was employed to quantify the conductivity of these membranes containing two mobile ion species, that is, cations and anions. The conductivity of both neat EMI‐Tf and EMI‐Tf swollen membranes exhibits Vogel‐Fulcher‐Tamman relation, revealing different activation parameters for ionic conduction. Furthermore, membranes containing different EMI‐Tf uptakes have similar conductivity over the reduced Tg/T axis and also follow Debye‐Stokes‐Einstein relation. Therefore, despite the abrupt change in conductivity near the critical uptake (29 wt %), both cluster Tg and segmental motion remain the key factors for the ionic conduction in these EMI‐Tf swollen membranes. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1273–1280  相似文献   

19.
Sorption and diffusion properties of poly(vinylidene fluoride)‐graft‐poly(styrene sulfonic acid) (PVDF‐g‐PSSA) and Nafion® 117 polymer electrolyte membranes were studied in water/methanol mixtures. The two types of membranes were found to have different sorption properties. The Nafion 117 membrane was found to have a maximum in‐solvent uptake around 0.4 to 0.6 mole fraction of methanol, while the PVDF‐g‐PSSA membranes took up less solvent with increasing methanol concentration. The proton NMR spectra were recorded for membranes immersed in deuterated water/methanol mixtures. The spectra showed that the hydroxyl protons inside the membrane exhibit resonance lines different from the resonance lines of hydroxyl protons in the external solvent. The spectral features of the lines of these internal hydroxyl groups in the membranes were different in the Nafion membrane compared with the PVDF‐g‐PSSA membranes. Diffusion measurements with the pulsed field gradient NMR (PFG‐NMR) method showed that the diffusion coefficient of the internal hydroxyl groups in the solvent immersed Nafion membrane mirrors the changes in the diffusion coefficients of hydroxyl and methyl protons in the external solvent. For the PVDF‐g‐PSSA membranes, a decrease in the diffusion coefficient of the internal hydroxyl protons was seen with increasing methanol concentration. These results indicate that the morphology and chemical structure of the membranes have an effect on their solvent sorption and diffusion characteristics. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3277–3284, 2000  相似文献   

20.
A novel technique in controlling the size of SiO2 nano‐particles in the preparation of Nafion/SiO2 composite membranes via in situ sol–gel method, as well as the effects of nano‐particle size on membrane properties and cell performance, is reported in this paper. Nafion/SiO2 composite membranes containing SiO2 nano‐particles with four different diameters (5 ± 0.5, 7 ± 0.5, 10 ± 1, and 15 ± 2 nm) are fabricated by altering the reactant concentrations during in situ sol–gel reaction. Sequentially, size effects of SiO2 nano‐particles on membrane properties and cell performance are investigated by SEM/EDAX, TEM, TGA, mechanical tensile, and single cell tests, etc. The results suggest that 10 nm is a critical diameter for SiO2 incorporated into Nafion matrix, exhibiting desirable physico‐chemical properties for operation at elevated temperature and low humidity. At 110°C and 59% RH, the output voltage of the cell equipped with Nafion/SiO2 (10 nm) obtains an output voltage of 0.625 V at 600 mA/cm2, which is 50 mV higher than that of unmodified Nafion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号