首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(methyl methacrylate) (PMMA) nanoparticles with a sensitive CO2‐responsive hydrophilic/hydrophobic surface that confers controlled dispersion and aggregation in water were prepared by emulsion polymerization at 50 °C under CO2 bubbling using amphiphilic diblock copolymers of 2‐dimethylaminoethyl methacrylate (DMAEMA) and N‐isopropyl acrylamide (NIPAAm) as an emulsifier. The amphiphilicity of the hydrophobic–hydrophilic diblock copolymer at 50 °C was triggered by CO2 bubbling in water and enabled the copolymer to serve as an emulsifier. The resulting PMMA nanoparticles were spherical, approximately 100 nm in diameter and exhibited sensitive CO2/N2‐responsive dispersion/aggregation in water. Using copolymers with a longer PNIPAAm block length as an emulsifier resulted in smaller particles. A higher concentration of copolymer emulsifier led to particles with a stickier surface. Given its simple preparation and reversible CO2‐triggered amphiphilic behavior, this newly developed block copolymer emulsifier offers a highly efficient route toward the fabrication of sensitive CO2‐stimuli responsive polymeric nanoparticle dispersions. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2149–2156  相似文献   

2.
Silica nanoparticles (17 ± 4 nm in diameter) were modified by grafting polystyrene chains to the surfaces using atom transfer radical polymerization (ATRP). The molecular weight of the grafted chains ranged from 8 to 48 kDa. These modified nanoparticles were mixed in solution with poly(styrene) homopolymer (18–120 kDa) and symmetric poly(styrene‐b‐butadiene) (PS‐PB) diblock copolymer (34–465 kDa) and the states of dispersion in the dried composites were characterized by transmission electron microscopy (TEM). In the so‐called wet brush limit, when the graft molecular weight equals or exceeds the matrix value, the silica particles form a uniform random dispersion in poly(styrene). Increasing the homopolymer matrix, molecular weight above the graft value results in particle clustering and macroscopic‐phase separation. Mixtures of the lamellar forming block copolymer and nanoparticles exhibit a very different trend, with particle clustering at the lower PS‐PB molecular weights and dispersion at the highest value. This latter finding is rationalized on the basis of packing constraints associated with lamellar order and the effective particle dimensions, and the degree of solvation at ordering, both of which favor higher molecular weight block copolymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2284–2299, 2007  相似文献   

3.
We develop a theoretical model of cooperative hydration to clarify the molecular origin of the observed nonlinear depression of the lower critical solution temperature (LCST) in the aqueous solutions of thermosensitive random copolymers and find the monomer composition at which LCST shows a minimum. Phase diagrams of poly(N-isopropylacrylamide-co-N,N-diethylacrylamide) copolymer solutions are theoretically derived on the basis of the theory of cooperative hydration by introducing the microscopic structure parameter η which characterizes the distribution of the monomer sequences along the chains. We compared them with the experimental data of LCST of random copolymers with various monomer compositions and also of the diblock copolymers with equimolar monomer composition. The transition temperature shifts to lower than those of homopolymer counterparts when the monomer sequence of the chains has an alternative tendency. On the contrary, for the blocky polymers such as diblock copolymers, the transition temperature remains almost the same as those of the homopolymers. Thus, the nonlinear effect in phase separation appears when the average block length of the copolymers is shorter than the average sequence length of the cooperative hydration. The degree of hydration is calculated as a function of the temperature and polymer concentration for varied distribution of the copolymer compositions. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1112–1123  相似文献   

4.
Poly(fluoroalkyl mathacrylate)‐block‐poly(butyl methacrylate) diblock copolymer latices were synthesized by a two‐step process. In the first step, a homopolymer end‐capped with a dithiobenzoyl group [poly(fluoroalkyl mathacrylate) (PFAMA) or poly(butyl methacrylate) (PBMA)] was prepared in bulk via reversible addition–fragmentation chain transfer (RAFT) polymerization with 2‐cyanoprop‐2‐yl dithiobenzoate as a RAFT agent. In the second step, the homopolymer chain‐transfer agent (macro‐CTA) was dissolved in the second monomer, mixed with a water phase containing a surfactant, and then ultrasonicated to form a miniemulsion. Subsequently, the RAFT‐mediated miniemulsion polymerization of the second monomer (butyl methacrylate or fluoroalkyl mathacrylate) was carried out in the presence of the first block macro‐CTA. The influence of the polymerization sequence of the two kinds of monomers on the colloidal stability and molecular weight distribution was investigated. Gel permeation chromatography analyses and particle size results indicated that using the PFAMA macro‐CTA as the first block was better than using the PBMA RAFT agent with respect to the colloidal stability and the narrow molecular weight distribution of the F‐copolymer latices. The F‐copolymers were characterized with 1H NMR, 19F NMR, and Fourier transform infrared spectroscopy. Comparing the contact angle of a water droplet on a thin film formed by the fluorinated copolymer with that of PBMA, we found that for the diblock copolymers containing a fluorinated block, the surface energy decreased greatly, and the hydrophobicity increased. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 471–484, 2007  相似文献   

5.
We study the effect of homopolymer A or B matrix on the conformations and effective interactions of AB diblock copolymer grafted particles using coarse‐grained molecular dynamics simulations. In an A homopolymer matrix we observe patchy conformations within the AB diblock copolymer grafted layer, where the number of B patches is controlled by the A‐A attractive interaction strength. In a B homopolymer matrix the grafted particle takes on a core‐corona conformation, where the inner A block aggregates near the particle surface and the outer B block forms a corona that interacts with the B matrix. The potential of mean force (PMF) between two particles in an A homopolymer matrix has a long‐ranged attractive well with a minima at intermediate distances corresponding to the location of the outer B block patches. The PMF between two particles in a B homopolymer matrix has an attractive well at short interparticle distances corresponding to the size of the inner A block. We isolate the contribution of the homopolymer matrix on the PMF between the two diblock copolymer grafted particles, by deducting the PMF in the absence of a matrix, assuming the contributions of the grafted particle and matrix to the PMF to be additive. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 76–88  相似文献   

6.
A series of copolymers composed of two monomer units having a polar phosphorylcholine group and an apolar fluorocarbon group with a controlled monomer unit sequence were synthesized by a reversible addition‐fragmentation chain transfer (RAFT) living radical polymerization method. 2‐Methacryloyloxyethyl phosphorylcholine (MPC) and 2,2,2‐trifluoroethyl methacrylate (TFEMA) were selected as the monomers, because they have disparate polarity. Furthermore, to investigate the influence of the monomer unit sequence in a polymer chain on the phase‐separated structure in the bulk and surface structure, copolymers having a continuous change in the monomer unit composition along the polymer chain (gradient copolymer) were synthesized, as well as random and block copolymers. The analysis of instantaneous composition revealed a continuous change in the monomer unit composition in the gradient copolymer and the statistical monomer unit sequence in the random copolymer. Thermal analysis assumed that the gradient sequence of the monomer unit would make the phase‐separated structure in the bulk ambiguous, while the well‐defined and monodispersive block sequence would undergo the distinct phase‐separation due to the extreme difference in the polarity of the component monomer units. The preliminary surface characterization of the synthesized polymers indicated the monomer unit sequence in the polymer chain would much influence on the surface structure. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6073–6083, 2005  相似文献   

7.
Atom transfer radical polymerization (ATRP) of acrylates in ionic liquid, 1‐butyl‐3‐methylimidazolium hexaflurophospate, with the CuBr/CuBr2/amine catalytic system was investigated. Sequential polymerization was performed by synthesizing AB block copolymers. Polymerization of butyl acrylate (monomer that is only partly soluble in an ionic liquid forming a two‐phase system) proceeded to practically quantitative conversion. If the second monomer (methyl acrylate) is added at this stage, polymerization proceeds, and block copolymer formed is essentially free of homopolymer according to size exclusion chromatographic analysis. The number‐average molecular weight of the copolymer is slightly higher than calculated, but the molecular weight distribution is low (Mw/Mn = 1.12). If, however, methyl acrylate (monomer that is soluble in an ionic liquid) is polymerized at the first stage, then butyl acrylate in the second‐stage situation is different. Block copolymer free of homopolymer of the first block (with Mw/Mn = 1.13) may be obtained only if the conversion of methyl acrylate at the stage when second monomer is added is not higher than 70%. Matrix‐assisted laser desorption/ionization time‐of‐flight analysis confirmed that irreversible deactivation of growing macromolecules is significant for methyl acrylate polymerization at a monomer conversion above 70%, whereas it is still not significant for butyl acrylate even at practically quantitative conversion. These results show that ATRP of butyl acrylate in ionic liquid followed by addition of a second acrylate monomer allows the clean synthesis of block copolymers by one‐pot sequential polymerization even if the first stage is carried out to complete conversion of butyl acrylate. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2799–2809, 2002  相似文献   

8.
Various star‐shaped copolymers of methyl methacrylate (MMA) and n‐butyl methacrylate (nBMA) were synthesized in one pot with RuCl2(PPh3)3‐catalyzed living radical polymerization and subsequent polymer linking reactions with divinyl compounds. Sequential living radical polymerization of nBMA and MMA in that order and vice versa, followed by linking reactions of the living block copolymers with appropriate divinyl compounds, afforded star block copolymers consisting of AB‐ or BA‐type block copolymer arms with controlled lengths and comonomer compositions in high yields (≥90%). The lengths and compositions of each unit varied with the amount of each monomer feed. Star copolymers with random copolymer arms were prepared by the living radical random copolymerization of MMA and nBMA followed by linking reactions. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 633–641, 2002; DOI 10.1002/pola.10145  相似文献   

9.
AB‐type block copolymers with poly(trimethylene carbonate) [poly(TMC); A] and poly(ethylene oxide) [PEO; B; number‐average molecular weight (Mn) = 5000] blocks [poly(TMC)‐b‐PEO] were synthesized via the ring‐opening polymerization of trimethylene carbonate (TMC) in the presence of monohydroxy PEO with stannous octoate as a catalyst. Mn of the resulting copolymers increased with increasing TMC content in the feed at a constant molar ratio of the monomer to the catalyst (monomer/catalyst = 125). The thermal properties of the AB diblock copolymers were investigated with differential scanning calorimetry. The melting temperature of the PEO blocks was lower than that of the homopolymer, and the crystallinity of the PEO block decreased as the length of the poly(TMC) blocks increased. The glass‐transition temperature of the poly(TMC) blocks was dependent on the diblock copolymer composition upon first heating. The static contact angle decreased sharply with increasing PEO content in the diblock copolymers. Compared with poly(TMC), poly(TMC)‐b‐PEO had a higher Young's modulus and lower elongation at break. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4819–4827, 2005  相似文献   

10.
Composite ultrafiltration membranes were fabricated by coating a thin film of self‐assembling polystyrene‐block‐poly(ethylene oxide) (PS‐b‐PEO) block copolymers and poly(acrylic acid) homopolymers on top of a support membrane. Block copolymers self‐assembled into a nanostructure where the minority component forms cylinders, whereas homopolymers reside in the core of the cylinders. Selective removal of the homopolymers led to the formation of pores. The morphology of the polymer layer was controlled by varying the content of homopolymers or polymer concentration of the coating solution, which led to membranes with different molecular weight cutoffs (MWCOs) and permeabilities. Uniform pores were obtained using low homopolymer contents, whereas high homopolymer contents caused macrophase separation and resulted in large polydisperse pores or craters at the surface. The thickness of the block copolymer film also influenced the structure and performance of the membranes, where a thicker film results in a strong decrease in permeability but a lower MWCO. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1546–1558  相似文献   

11.
A series of environmentally sensitive ABA triblock copolymers with different block lengths were prepared by reversible addition‐fragmentation chain transfer (RAFT) polymerization from acrylic acid (AA) and N‐isopropylacrylamide (NIPAAm). The GPC and 1H NMR analyses demonstrated the narrow molecular weight distribution and precise chemical structure of the prepared P(AA‐b‐NIPAAm‐b‐AA) triblock copolymers owing to the controlled/living characteristics of RAFT polymerization. The lower critical solution temperature (LCST) of the triblock copolymers could be tailored by adjusting the length of PAA block and controlled by the pH value. Under heating, the triblock copolymers underwent self‐assemble in dilute aqueous solution and formed nanoparticles revealed via TEM images. Physically crosslinked nanogels induced by inter‐/intra‐hydrogen bonding or core‐shell micelle particles thus could be obtained by changing environmental conditions. With a well‐defined structure and stimuli‐responsive properties, the P(AA‐b‐NIPAAm‐b‐AA) copolymer is expected to be employed as a nanocarrier for biomedical applications in controlled‐drug delivery and targeting therapy. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1109–1118  相似文献   

12.
各类多组分聚合物中的特殊相互作用   总被引:16,自引:2,他引:14  
本文以作者实验室的新结果为主,评述了关于向各类多组分聚合物中引入特殊相互作用及其对相客性的影响以及该领域的发展趋势.所讨论的多组分聚合物包括简单共混物、嵌段共混物、互穿网络聚合物、共聚物和均聚物的共混物、离聚物的共混物以及无机粒子和聚合物的复合物等.  相似文献   

13.
The formation and morphological characteristics of crew‐cut aggregates from blends of polystyrene‐b‐poly(acrylic acid) diblock copolymer and polystyrene homopolymer in solution were studied by static light scattering, transmission electron microscopy and size exclusion chromatography. The crew‐cut aggregates, consisting of a polystyrene core and a poly(acrylic acid) corona, were prepared by direct dissolution of the polymer blends in a selective solvent mixture consisting of 93 wt % dimethylformamide and 7 wt % water. It is found that the aggregation behavior depends strongly on the relative volume fractions of the block copolymer and homopolymer in the blends. This is a result of the difference in solubility between the copolymer and the homopolymer in solution which, in turn, influences their miscibility and mutual solubility and consequently the morphology of the formed crew‐cut aggregates. Specifically, when the homopolymer fraction is low, it is mainly dissolved in the cores of the crew‐cut aggregates formed by the block copolymer. When the homopolymer fraction exceeds its solubility limit in the copolymer micelles, aggregates of another type are formed which contain a major fraction of the homopolymer. These aggregates are usually much larger than the primary micelles and have an internal structure due to the formation of reverse micelles from the dissolved block copolymer chains. The importance of thermodynamic vs. kinetic aspects during the formation of the crew‐cut aggregates is also discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1469–1484, 1999  相似文献   

14.
Glycolide (GL) and ?‐caprolactone (CL) were copolymerized in bulk at relatively high temperatures using stannous octoate as a catalyst. To investigate the relationship among microstructure, thermal properties, and crystallinity, three series of copolymers prepared at various reaction temperatures, times, and comonomer feed ratios were prepared and characterized by 1H and 13C NMR, DSC, and wide‐angle X‐ray diffraction (WAXD). The 600‐MHz 1H NMR spectra provided information about not only the copolymer compositions but also about the chain microstructure. The reactivity ratios (rG and rC) were calculated from the monomer sequences and were 6.84 and 0.13, respectively. In terms of overall feed compositions, the sequence lengths of the glycolyl units calculated from the reactivity ratios exceeded those measured from the polymeric products. Mechanistic considerations based on reactivity ratios, monomer consumption data, and average sequence lengths are discussed. The unusual phase diagram of GL/CL copolymers implies that the copolymer melting temperature does not depend on its composition alone but rather on the nature of the sequence distribution. The DSC and WAXD measurements show a close relationship between polymer crystallinity and the nature of the polymer sequence. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 544–554, 2002; DOI 10.1002/pola.10123  相似文献   

15.
We use a three‐dimensional self‐consistent field model to study the adsorption of A‐B copolymers from A‐B copolymer/A homopolymer blends on planar substrates comprising two chemically distinct regions C and D. The interplay between the spatial distribution of the surface chemical heterogeneities and the monomer sequence distribution in the copolymer is examined for diblock (A‐B), triblock (A‐B‐A), inverted triblock (B‐A‐B), and alternating (A‐alt‐B) copolymers. Our results demonstrate that when the chemically heterogeneous motifs on the substrate are detected by the copolymer adsorbing segments, the copolymers can transcribe them with high fidelity into three dimensions. The way the surface pattern gets transferred is dictated by the monomer sequence distribution. We show that relative to alternating copolymers, block copolymers are generally better at capturing the chemical pattern shape and transcribing it into the polymer mixture. Moreover, block copolymers with shorter adsorbing blocks are capable of better recognizing the substrate motifs. In order to address the interplay between the monomer sequence distribution in the copolymer and the interaction energies, we systematically vary the repulsion between A and B, and the attraction between B and D. Our calculations reveal that increasing i) the interaction between the copolymer adsorbing segments (B) and the “sticky” points at the substrate (D), and/or ii) the repulsion between the copolymer segments (A and B) increases the total amount of the copolymer adsorbed at the mixture/substrate interface, and decreases (increases) the fidelity of the substrate chemical pattern recognition by compositionally symmetric (asymmetric) copolymers.  相似文献   

16.
Nanoparticles provide an attractive route to modifying polymer thin film properties, yet controlling the dispersion and morphology of functionalized nanoparticle filled films is often difficult. Block copolymers can provide an ideal template for directed assembly of nanoparticles under controlled nanoparticle‐polymer interactions. Previously we observed that neat films of cylinder forming poly(styrene‐b‐methyl methacrylate) PS‐b‐PMMA block copolymer (c‐BCP) orient vertically with dynamic sharp thermal cold zone annealing (CZA‐S) over wide range of CZA‐S speed (0.1–10) μm/s. Here, we introduce a low concentration (1–5 wt %) of nanoparticles of phenolic group functionalized CdS (fCdS‐NP), to PMMA cylinder forming polystyrene‐b‐poly (methyl methacrylate) block copolymer (c‐BCP) films. Addition of the fCdS‐NP induces a vertical to horizontal orientation transition at low CZA‐S speed, V = 5 μm/s. The orientation flip studies were analyzed using AFM and GISAXS. These results confirm generality of our previously observed orientation transition in c‐BCP under low speed CZA‐S with other nanoparticles (gold [Au‐NP], fulleropyrrolidine [NCPF‐NP]) in the same concentration range, but reveal new aspects not previously examined: (1) A novel observation of significant vertical order recovery from 5–10% vertical cylindrical fraction at V = 5 μm/s to 46–63% vertical cylindrical fraction occurring at high CZA‐S speed, V = 10 μm/s for the fCdS nanoparticle filled films. (2) We rule out the possibility that a nanoparticle wetting layer on the substrate is responsible for the vertical to horizontal flipping transition. (3) We demonstrate that the orientation flipping results can be achieved in a nanoparticle block copolymer system where the nanoparticles are apparently better‐dispersed within only one (matrix PS) domain unlike our previous nanoparticle system studied. We consider facile processing conditions to fabricate functionalized nanoparticles filled PS‐PMMA block copolymer films with controlled anisotropy, a useful strategy in the design of next generation electronic and photonic materials. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 604–614  相似文献   

17.
Poly(butylene terephthalate) (PBT)/polycarbonate (PC) samples, prepared via reactive blending in the presence of Ti‐ and Sm‐based catalysts, resulted in block copolymers whose block length decreased as the mixing time increased. A single homogeneous amorphous phase occurred when the blocks had monomeric sequences shorter than 10 units. Otherwise, a crystalline phase of PBT developed. Also, in poly(ethylene terephthalate) (PET)/PC blends previously studied, the miscibility was strictly correlated with the crystallizability of the system. Therefore, the miscibility of the PBT/PC and PET/PC blends was compared with respect to the tendency of the PBT and PET blocks to crystallize under isothermal conditions. The crystallization rate of the PBT/PC copolymers was faster than that of the PET/PC copolymers with similar block lengths. Accordingly, the minimum crystallizable sequence length of the PBT blocks was shorter than that of the PET blocks (18 vs 31 monomeric unit sequences). This behavior was interpreted as an effect of the more flexible PBT units, which had a greater tendency to fold and crystallize than the PET units. Therefore, PBT, the blocks of which tended to crystallize even if they were very short and phase‐separated, was characterized by a poorer compatibility with PC than that of PET. As a result, the block size had a fundamental role in determining the crystallizability and, therefore, phase behavior of the semicrystalline block copolymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2821–2832, 2004  相似文献   

18.
A series of ABA amphiphilic triblock copolymers possessing polystyrene (PS) central hydrophobic blocks, one group with “short” PS blocks (DP = 54–86) and one with “long” PS blocks (DP = 183–204) were synthesized by atom transfer radical polymerization. The outer hydrophilic blocks were various lengths of poly(oligoethylene glycol methyl ether) methacrylate, a comb‐like polymer. The critical aggregation concentrations were recorded for certain block copolymer samples and were found to be in the range circa 10−9 mol L−1 for short PS blocks and circa 10−12 mol L−1 for long PS blocks. Dilute aqueous solutions were analyzed by transmission electron microscopy (TEM) and demonstrated that the short PS block copolymers formed spherical micelles and the long PS block copolymers formed predominantly spherical micelles with smaller proportions of cylindrical and Y‐branched cylindrical micelles. Dynamic light scattering analysis results agreed with the TEM observations demonstrating variations in micelle size with PS and POEGMA chain length: the hydrodynamic diameters (DH) of the shorter PS block copolymer micelles increased with increasing POEGMA block lengths while maintaining similar PS micellar core diameters (DC); in contrast the values of DH and DC for the longer PS block copolymer micelles decreased. Surface‐pressure isotherms were recorded for two of the samples and these indicated close packing of a short PS block copolymer at the air–water interface. The aggregate solutions were demonstrated to be stable over a 38‐day period with no change in aggregate size or noticeable precipitation. The cloud point temperatures of certain block copolymer aggregate solutions were measured and found to be in the range 76–93 °C; significantly these were ∼11 °C higher in temperature than those of POEGMA homopolymer samples with similar chain lengths. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7739–7756, 2008  相似文献   

19.
The synthetic parameters for the chemoenzymatic cascade synthesis of block copolymers combining enzymatic ring‐opening polymerization (EROP) and atom transfer radical polymerization (ATRP) in one pot were investigated. A detailed analysis of the mutual interactions between the single reaction components revealed that the ATRP catalyst system could have a significant inhibiting effect on the enzyme activity. The inhibition of the enzyme was less pronounced in the presence of multivalent ligands such as dinonyl bipyridine, which thus could be used in this reaction as an ATRP catalyst. Moreover, the choice of the ATRP monomer was investigated. Methyl methacrylate interfered with EROP by transesterification, whereas t‐butyl methacrylate was inert. Block copolymers were successfully synthesized with this cascade approach by the activation of ATRP after EROP by the addition of the ATRP catalyst and, with lower block copolymer yields, by the mixing of all the components before the copolymerization. Adetailed kinetic analysis of the reactions and the structure of the block copolymers showed that the first procedure proceeded smoothly to high block copolymer yields, whereas in the latter a noteworthy amount of the poly(t‐butyl methacrylate) homopolymer was detected. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4290–4297, 2006  相似文献   

20.
Combined analysis of experimental data on monomer diffusion, phase equilibrium, and copolymerization kinetics in systems of monomers (nonyl acrylate and 2‐methyl‐5‐vinyltetrazole) as well as their copolymers and homopolymers was carried out. The composition of the mixture in the vicinity of the growing macroradical can differ significantly from the average composition in the whole reactor volume because of consumption of the more‐reactive reactant 2‐methyl‐5‐vinyltetrazole. Nonyl acrylate exhibited limited compatibility with copolymers enriched in 2‐methyl‐5‐vinyltetrazole and its homopolymer. Phase diagrams were obtained for the latter homopolymer. The concentration plots of the diffusion coefficients of both monomers in their copolymers of various compositions were determined. Microphase separation was observed at specific conversions in the reaction system where the composition of a copolymer and its concentration in a monomer solution approached the binodal of the phase diagram. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1383–1389, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号