首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanoparticles(NPs) with easily modified surfaces have been playing an important role in biomedicine.As cancer is one of the major causes of death,tremendous efforts have been devoted to advance the methods of cancer diagnosis and therapy.Recently,magnetic nanoparticles(MNPs) that are responsive to a magnetic field have shown great promise in cancer therapy.Compared with traditional cancer therapy,magnetic field triggered therapeutic approaches can treat cancer in an unconventional but more effective and safer way.In this review,we will discuss the recent progress in cancer therapies based on MNPs,mainly including magnetic hyperthermia,magnetic specific targeting,magnetically controlled drug delivery,magnetofection,and magnetic switches for controlling cell fate.Some recently developed strategies such as magnetic resonance imaging(MRI) monitoring cancer therapy and magnetic tissue engineering are also addressed.  相似文献   

2.
In the last years, hyperthermia induced by the heating of magnetic nanoparticles (MNPs) in an alternating magnetic field received considerable attention in cancer therapy. The thermal effects could be automatically controlled by using MNPs with selective magnetic absorption properties. In this paper, we analyze the temperature field determined by the heating of MNPs, injected in a malignant tissue, subjected to an alternating magnetic field. The main parameters which have a strong influence on temperature field are analyzed. The temperature evolution within healthy and tumor tissues are analyzed by finite element method (FEM) simulations in a thermo-fluid model. The cooling effect produced by blood flow in blood vessels from the tumor is considered. A thermal analysis is conducted under different distributions of MNP injection sites. The interdependence between the optimum dose of the nanoparticles and various types of tumors is investigated in order to understand their thermal effect on hyperthermia therapy. The control of the temperature field in the tumor and healthy tissues is an important step in the healing treatment.  相似文献   

3.
Due to the unique magnetic, mechanical and thermal properties, magnetic nanoparticles(MNPs) have comprehensive applications as the contrast and therapeutic agents in biomedical imaging and magnetic hyperthermia. The linear and nonlinear magnetoacoustic responses determined by the magnetic properties of MNPs have attracted more and more attention in biomedical engineering. By considering the relaxation time of MNPs, we derive the formulae of second harmonic magnetoacoustic responses(2H-MARs) for a cylindrical MNP solution model based on the mechanical oscillations of MNPs in magnetoacoustic tomography with magnetic induction(MAT-MI). It is proved that only the second harmonic magnetoacoustic oscillations can be generated by MNPs under an alternating magnetic excitation. The acoustic pressure of the 2H-MAR is proportional to the square of the magnetic field intensity and exhibits a linear increase with the concentration of MNPs. Numerical simulations of the 2H-MAR are confirmed by the experimental measurements for various magnetic field intensities and solution concentrations using a laser vibrometer. The favorable results demonstrate the feasibility of the harmonic measurements without the fundamental interference of the electromagnetic excitation, and suggest a new harmonic imaging strategy of MAT-MI for MNPs with enhanced spatial resolution and improved signal-to-noise ratio in biomedical applications.  相似文献   

4.
Yu Zhang 《中国物理 B》2021,30(11):118504-118504
Magnetic two-dimensional (2D) van der Waals (vdWs) materials and their heterostructures attract increasing attention in the spintronics community due to their various degrees of freedom such as spin, charge, and energy valley, which may stimulate potential applications in the field of low-power and high-speed spintronic devices in the future. This review begins with introducing the long-range magnetic order in 2D vdWs materials and the recent progress of tunning their properties by electrostatic doping and stress. Next, the proximity-effect, current-induced magnetization switching, and the related spintronic devices (such as magnetic tunnel junctions and spin valves) based on magnetic 2D vdWs materials are presented. Finally, the development trend of magnetic 2D vdWs materials is discussed. This review provides comprehensive understandings for the development of novel spintronic applications based on magnetic 2D vdWs materials.  相似文献   

5.
A modified diamond–photonics based metrology is proposed to explore the magnetic fields created by agglomerates of magnetic nanoparticles (MNPs). MNPs are promising for environmental and medical applications; those proposed for cancer magnetic hyperthermia treatments are small superparamagnetic <20 nm iron oxide particles. Inside cells, they assemble in larger MNP agglomerates, reaching cross-sections of several micrometers. Here, these conditions are reproduced and MNP agglomerates immobilized. Optically detected magnetic resonance (ODMR) signals recorded without a bias field in a confocal microscope and scanning across a homogenous shallow layer of fluorescent nitrogen-vacancy centers in a bulk diamond sample placed in direct contact with the MNP agglomerates are used to determine magnetic fields with a spatial resolution of 500 nm in a lateral direction. This spatial resolution allows determining magnetic field maps around individual MNP agglomerates, for which magnetic fields with strengths ranging from 0.03 mT to maximal 1.2 mT in the direct vicinity of the agglomerates and with detectable fields up to 5 µm away from the agglomerates, are determined. Based on the findings, a pathway to non-invasively study the micro/nano topology of MNP agglomerates is proposed.  相似文献   

6.
Magnetic nanoparticles (MNPs) are widely used in the areas of biology and biomedicine. The interaction between MNPs and proteins plays a crucial role in the bioapplication of MNPs, and the binding affinity of protein–MNPs is the manifestation of this interaction. The binding affinity of some proteins with MNPs modified in various ways is determined by fluorescence quenching. The results show that the binding affinity depends on the properties of both the MNPs and the proteins. The higher the surface curvature of MNPs, the larger the MNP, and the higher the binding affinity. No significant difference is found in binding affinity between MNPs with different modification methods. For proteins, the binding affinity depends on the properties of individual proteins, such as the amino acid sequence, the native protein conformation in solution, the isoelectric point, and surface potential. In general, the binding affinity is higher for proteins with cysteine residues on the surface. In addition, pH affects the binding affinity between proteins and MNPs; positively charged proteins and lower pH are more suitable for MNP binding due to electrostatic forces.  相似文献   

7.
稀磁半导体是一种能同时利用电子的电荷和自旋属性,并兼具铁磁性能和半导体性能的自旋电子学材料。本文主要介绍ZnO、In2O3等氧化物稀磁半导体的研究进展,一是从实验角度介绍其制备、结构、磁性、电输运性质等特性;二是从理论角度对其磁交换能、电子结构、居里温度和磁性产生的机制进行阐述;三是在稀磁半导体的基础上进一步延伸,介绍其相关的异质结构的磁电阻效应,并在文章的最后对氧化物稀磁半导体的研究进行总结和展望。  相似文献   

8.
储鑫  余靓  侯仰龙 《中国物理 B》2015,24(1):14704-014704
Progress in surface modification of magnetic nanoparticles(MNPs)is summarized with regard to organic molecules,macromolecules and inorganic materials.Many researchers are now devoted to synthesizing new types of multi-functional MNPs,which show great application potential in both diagnosis and treatment of disease.By employing an ever-greater variety of surface modification techniques,MNPs can satisfy more and more of the demands of medical practice in areas like magnetic resonance imaging(MRI),fluorescent marking,cell targeting,and drug delivery.  相似文献   

9.
宋德王  牛原  肖黎鸥  李丹 《计算物理》2013,30(5):783-790
应用基于密度泛函理论的第一性原理,研究Mn原子掺杂在ZnS(111)表面的电子结构和磁性.对于单原子的掺杂组态,替位表面第一层的Zn原子时体系形成能最低,说明该层是最稳定的掺杂位置.体系总磁矩取决于Mn原子的局域环境.而对于双掺杂组态,当Mn与Mn之间呈短程铁磁耦合作用时体系最稳定.这可由Mn原子和近邻S原子的p-d杂化作用解释.此时,体系的居里温度估算值为469 K,明显高于室温,具有理论指导意义.Mn原子和受主半导体之间的相互作用是自旋极化产生的主要原因.计算结果表明,该掺杂材料可以很好的用来制作稀磁半导体,具有良好的应用前景.  相似文献   

10.
磁性材料的磁结构、磁畴结构和拓扑磁结构   总被引:2,自引:0,他引:2       下载免费PDF全文
张志东 《物理学报》2015,64(6):67503-067503
首先简要地介绍了磁性材料中磁结构、磁畴结构和拓扑磁结构以及相互之间的关系. 一方面, 磁畴结构由材料的磁结构、内禀磁性和微结构因素决定; 另一方面, 磁畴结构决定了材料磁化和退磁化过程以及技术磁性. 拓扑学与材料物理、材料性能的联系越来越紧密. 最近的研究兴趣集中在一些拓扑磁性组态, 如涡旋、磁泡、麦纫、斯格米子等. 研究发现这些拓扑磁结构的拓扑性质与磁性能密切相关. 然后从尺寸效应、缺陷、晶界三个方面介绍国际学术界在磁结构、磁畴结构和拓扑磁结构方面的进展. 最后介绍了在稀土永磁薄膜材料的微观结构、磁畴结构和磁性能关系、交换耦合纳米盘中的拓扑磁结构及其动力学行为方面的工作. 通过对文献的评述, 得到以下结论: 开展各向异性纳米复合稀土永磁材料的研究对更好地利用稀土资源具有重要的意义. 可以有目的地改变材料的微结构, 可控地进行磁性材料的磁畴工程, 最终获得优秀的磁性能. 拓扑学的概念正在应用于越来越多的学科领域, 在越来越多的材料中发现拓扑学的贡献. 研究磁畴结构、拓扑磁性基态或者激发态的形成规律以及动力学行为对理解量子拓扑相变以及其他与拓扑相关的物理效应是十分重要的. 也会帮助理解不同拓扑学态之间相互作用的物理机制及其与磁性能之间的关系, 同时拓展拓扑学在新型磁性材料中的应用.  相似文献   

11.
The design of novel nanostructured magnetic materials requires a good understanding of the variation in the magnetic properties due to different synthesis conditions. In this work, four different procedures for fabricating Co‐ferrite nanoparticles with similar sizes between 7 and 10 nm are compared by studying their structural and magnetic properties. Non‐aqueous methods based on the thermal decomposition of metal acetylacetonates at high temperatures, either with or without surfactants, provide highly crystalline nanoparticles with large saturation magnetization values and a coherent reversal of the magnetic moment. However, variations in the density of defects and in the shape of the nanocrystals determine the distribution of switching fields and the effective magnetic anisotropy, which reaches up to ≈1 × 107 erg cm?3 for oleic acid‐capped 9 nm nanoparticles. It is shown that the saturation magnetization values for nanoparticles produced by different methods are in the range between 49 and 95 emu g?1 due to differences in the stoichiometry, in the cation occupancy, in the magnetic disorder and in the spin canting of the magnetic sub‐lattices, the latter evaluated by in‐field Mössbauer spectroscopy.  相似文献   

12.
A new magnetomechanical approach in biomedicine is described. It is based on the rotational oscillations of magnetic nanoparticles (MNPs) in a non-heating magnetic field (MF) at frequencies of 0.1–1000 Hz. Nanodeformations induced in associated macromolecules can be used for selective control of their properties. Models of local molecular effects are presented, and the possibility of inducing biochemical responses through the deformation of biomembranes and membrane structures is assessed. A way of macroscopically limiting the MNP activation volume in a gradient MF is proposed.  相似文献   

13.
The behavior of iron nanoparticles is heavily influenced by their highly reactive surfaces. A better understanding of organic ligand/particle interactions must be achieved in order to synthesize iron nanoparticles with magnetic saturations (σ sat) equivalent to bulk iron. Even when synthesized using careful, air‐free chemistry techniques and ligands more weakly interacting than those often reported in the literature, the magnetic saturation of iron nanoparticles generally only approaches, but not equals, the magnetic saturation of bulk iron. Here, iron nanoparticles are synthesized using Schlenk line chemistry methods and two different weakly interacting ligands: 2,4‐pentanedione and hexaethylene glycol monododecylether. These particles have saturation magnetizations slightly lower than bulk iron, which is believed to be caused by interactions between the passivating ligands and the surface of the nanoparticles. Using X‐ray absorption fine structure studies, it is shown that oxidized species of iron exist at the nanoparticles’ surface and can be attributed to iron/ligand interaction. The percentage of oxidized species scales with the surface to volume ratio of the nanoparticles, and therefore appears limited to the nanoparticle surface. X‐ray absorption fine structure analysis also shows that the nanoparticles have an expanded crystalline lattice, which can further impact their magnetic properties.  相似文献   

14.
We investigate the magnetic properties of Ho‐doped Bi2Te3 thin films grown by molecular beam epitaxy. Analysis of the polarized X‐ray absorption spectra at the Ho M5 absorption edge gives an effective 4f magnetic moment which is ~45% of the Hund's rule ground state value. X‐ray magnetic circular dichroism (XMCD) shows no significant anisotropy, which suggests that the reduced spin moment is not due to the crystal field effects, but rather the presence of non‐magnetic or antiferromagnetic Ho sites. Extrapolating the temperature dependence of the XMCD measured in total electron yield and fluorescence yield mode in a field of 7 T gives a Curie–Weiss temperature of ?CW ≈ –30 K, which suggests antiferromagnetic ordering, in contrast to the paramagnetic behavior observed with SQUID magnetometry. From the anomaly of the XMCD signal at low temperatures, a Néel temperature TN between 10 K and 25 K is estimated. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

15.
The topological structure and the statistical properties of stochastic magnetic fields are investigated on the basis of the so called tokamap. First, a monotonic safety factor (q‐profile) is assumed. As it is demonstrated, the transition from the continuous model to the discrete mapping in its symmetric form is essential, not only for the symplectic structure, but also for the precise values characterizing the transition to chaos (e.g. the break‐up of the KAM surfaces) in applications. Statistical properties of the symmetric tokamap, such as escape rates and anomalous diffusion properties, are being presented. By a systematic procedure the stable and unstable manifolds of the periodic hyperbolic fixed points and the resulting homoclinic tangles (stochastic layers) are determined. The latter are important for the magnetic field line transport. For a non‐monotonic q‐profile, the differences between the symmetric and non‐symmetric revtokamap become also significant. The symmetric revtokamap represents an open nonlinear dynamical system which is characterized here with the relevant tools. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
孙亚超  朱明刚  石晓宁  宋利伟  李卫 《物理学报》2017,66(15):157502-157502
采用磁控溅射技术制备了具有永磁特征的Nd-Ce-Fe-B多层纳米复合薄膜,并对其进行了退火处理.通过改变退火温度,研究其对薄膜磁性能和晶体结构的影响.结果表明,随着退火温度的提高薄膜磁性能逐渐增大,但当温度达到695℃以上时,薄膜的磁性能急剧下降.当退火温度为675℃时,薄膜的矫顽力Hci=10.1 kOe(1Oe=79.5775 A/m),垂直于薄膜表面方向的剩余磁化强度4πM_(r⊥)=5.91 kG(1 G=10~3/(4π)A/m).薄膜的X射线衍射结果表明,磁性薄膜具有较好的c轴取向.通过对薄膜磁化反转过程的研究,发现随着外加磁场的增大,M_(rev)的极小值向M_(irr)减小的方向移动,这与畴壁弯曲模型类似,表明在薄膜中存在较强烈的局部钉扎作用,而剩余磁化强度曲线表明这种钉扎作用在薄膜矫顽力机制中并不占支配作用.此外,薄膜的Henkel曲线结果表明在薄膜中存在较强的交换耦合作用,在经过685℃退火的薄膜中磁相互作用更加显著.  相似文献   

17.
The assembly of magnetic cores into regular structures may notably influence the properties displayed by a magnetic colloid. Here, key synthesis parameters driving the self‐assembly process capable of organizing colloidal magnetic cores into highly regular and reproducible multi‐core nanoparticles are determined. In addition, a self‐consistent picture that explains the collective magnetic properties exhibited by these complex assemblies is achieved through structural, colloidal, and magnetic means. For this purpose, different strategies to obtain flower‐shaped iron oxide assemblies in the size range 25–100 nm are examined. The routes are based on the partial oxidation of Fe(OH)2, polyol‐mediated synthesis or the reduction of iron acetylacetonate. The nanoparticles are functionalized either with dextran, citric acid, or alternatively embedded in polystyrene and their long‐term stability is assessed. The core size is measured, calculated, and modeled using both structural and magnetic means, while the Debye model and multi‐core extended model are used to study interparticle interactions. This is the first step toward standardized protocols of synthesis and characterization of flower‐shaped nanoparticles.  相似文献   

18.
Many materials exhibit various magnetic phenomena as a function of magnetic field, temperature and/or pressure. Usually, bulk magnetic measurements provide first information on the magnetic state of the material by measuring their response on the applied magnetic field. However, it is necessary to investigate materials also on a microscopic scale. This is often done by means of neutron scattering. In this contribution we discuss basic ideas of this method and we report on few experimental results obtained with a split-pair coil 14.5 T superconducting magnet which can be combined with dilution stick offering temperatures as low as 30 mK and/or with a small clamped-type pressure cell which offers pressure up to 1.0 GPa.  相似文献   

19.
The nanostructured systems are characterized by a density of grain boundaries which is higher than that of microcrystalline systems, giving rise to unusual properties. Both the structural nature and the thickness of grain boundaries which are dependent on the synthesis conditions, strongly influence the total magnetic properties. We report several examples based on metallic and insulating nanostructured systems to illustrate how the presence of grain boundaries can be experimentally evidenced, as well as their structure and magnetic behavior, and finally the significant role of grain boundaries on the magnetic properties.  相似文献   

20.
In recent years, solid-state NMR spectroscopy has evolved into an important characterization tool for the study of solid catalysts and chemical processes on their surface. This interest is mainly triggered by the need of environmentally benign organic transformations (“green chemistry”), which has resulted in a large number of new catalytically active hybrid materials, which are organized on the meso- and nanoscale. Typical examples of these catalysts are supported homogeneous transition metal catalysts or transition metal nanoparticles (MNPs). Solid-state NMR spectroscopy is able to characterize both the structures of these materials and the chemical processes on the catalytic surface. This article presents recent trends both on the characterization of immobilized homogeneous transition metal catalysts and on the characterization of surface species on transition metal surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号