首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
2.
This article reports on the interfacial modifications induced by different amounts of a succinyl‐fluorescein grafted atactic polypropylene (a‐PP‐SF) as a truly interfacial agent in polypropylene/talc composite materials. The a‐PP‐SF used, which contains 4% grafts, was previously obtained in our laboratory by chemical modification of a byproduct from industrial polymerization reactors. Thermal and mechanical analyses of composites, performed under dynamic conditions, led to the correlation of parameters at the microscopic scale with others at the macroscopic scale. Thus, the interfacial effect caused by different amounts of a‐PP‐SF in the composite can be concluded by observations made at either scale. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1371–1382, 2002  相似文献   

3.
A quantum mechanical/molecular mechanical (QM/MM) approach based on the density‐functional tight‐binding (DFTB) theory is a useful tool for analyzing chemical reaction systems in detail. In this study, an efficient QM/MM method is developed by the combination of the DFTB/MM and particle mesh Ewald (PME) methods. Because the Fock matrix, which is required in the DFTB calculation, is analytically obtained by the PME method, the Coulomb energy is accurately and rapidly computed. For assessing the performance of this method, DFTB/MM calculations and molecular dynamics simulation are conducted for a system consisting of two amyloid‐β(1‐16) peptides and a zinc ion in explicit water under periodic boundary conditions. As compared with that of the conventional Ewald summation method, the computational cost of the Coulomb energy by utilizing the present approach is drastically reduced, i.e., 166.5 times faster. Furthermore, the deviation of the electronic energy is less than . © 2016 Wiley Periodicals, Inc.  相似文献   

4.
The performance of a range density functional theory functionals combined in a quantum mechanical (QM)/molecular mechanical (MM) approach was investigated in their ability to reliably provide geometries, electronic distributions, and relative energies of a multicentered open‐shell mechanistic intermediate in the mechanism 8R–Lipoxygenase. With the use of large QM/MM active site chemical models, the smallest average differences in geometries between the catalytically relevant quartet and sextet complexes were obtained with the B3LYP* functional. Moreover, in the case of the relative energies between 4II and 6II , the use of the B3LYP* functional provided a difference of 0.0 kcal mol–1. However, B3LYP± and B3LYP also predicted differences in energies of less than 1 kcal mol–1. In the case of describing the electronic distribution (i.e., spin density), the B3LYP*, B3LYP, or M06‐L functionals appeared to be the most suitable. Overall, the results obtained suggest that for systems with multiple centers having unpaired electrons, the B3LYP* appears most well rounded to provide reliable geometries, electronic structures, and relative energies. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号