首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A series of new donor–acceptor‐type low‐band‐gap semiconducting polymers were synthesized as electron donors for organic photovoltaic cells. The polymers comprised quinoxaline derivatives as the acceptors and a benzodithiophene (BDT) derivative as the donors. 5,8‐Dibromoquinoxaline (Qx), 8,11‐dibromobenzo[a]phenazine (BPz), 10,13‐dibromodibenzo[a,c]phenazine (DBPz), and 8,11‐dibromo‐5‐(9H‐carbazol‐9‐yl)benzo[a]phenazine) (CBPz) were synthesized and polymerized with 2,6‐bis(trimethyltin)?4,8‐diethylhexyloxybenzo‐[1,2‐b;3,4‐b]dithiophene (BDT) through Stille cross‐coupling to produce four types of fully conjugated semiconducting polymers: PBDT‐Qx, PBDT‐BPz, PBDT‐DBPz, and PBDT‐CBPz , respectively. Intramolecular charge transfer between the electron donating and accepting units in the polymeric backbone induced a broad absorption from 300 to 800 nm. The optical band gap energies of the polymers were measured from their absorption onsets to be 1.54–1.80 eV depending on the polymer structure. Solution‐processed field‐effect transistors were fabricated to measure the hole mobilities of the polymers, and bulk hetero‐junction photovoltaic devices were fabricated using the synthesized polymers as electron donors and fullerene derivatives as electron acceptors. One of these devices showed a high power conversion efficiency of 3.87% with an open‐circuit voltage of 0.78 V, a short‐circuit current of 9.68 mA/cm2, and a fill factor of 0.51 under air mass 1.5 global (AM 1.5 G) illumination conditions (100 mW/cm2). © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4136–4149  相似文献   

2.
In this study, four novel silafluorene (SiF) and benzotriazole (Btz) bearing conjugated polymers are synthesized. In the context of electrochemical and optical studies, these polymers are promising materials both for electrochromic device (ECD) and polymer solar cell (PSC) applications. All of the polymers are ambipolar (both p‐ and n‐dopable) and multichromic. Electrochemistry experiments indicate that incorporation of selenophene instead of thiophene unit increases the HOMO energy level of the polymers. Power conversion efficiency of the PSCs reached 1.75% for PTBTSiF, 1.55% for PSBSSiF, 2.57% for PBTBTSiF, and 1.82% for PBSBSSiF. The hole mobilities of the polymers are estimated through space charge limited current (SCLC) model. PBTBTSiF has the highest hole mobility as 2.44 × 10?3 cm2 V s?1. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1541–1547  相似文献   

3.
Low‐band gap selenophene‐based polymers were synthesized. Their optoelectronic and photovoltaic properties and space‐charge limited currents were compared with those of the related thiophene‐based polymers. The band gaps of the Se‐based derivatives were approximately 0.05–0.12 eV lower than those of their thiophene counterparts. Organic photovoltaic (OPV) devices based on the blends of these polymers and 1‐(3‐methoxycarbonyl)propyl‐1‐phenyl‐[6,6]‐C71 (PC71BM) were fabricated, and the maximum power conversion efficiency of the OPV device based on PSPSBT and PC71BM was 3.1%—with a short‐circuit current density (Jsc) of 9.3 mA cm?2, an open‐circuit voltage (Voc) of 0.79 V, and a fill factor of 0.42—under AM 1.5 G illumination (100 mW cm?2). © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4550–4557  相似文献   

4.
An alternating donor‐acceptor copolymer based on a benzotriazole and benzodithiophene was synthesized and selenophene was incorporated as π‐bridge. The photovoltaic and optical properties of polymer were studied. The copolymer showed medium band gap and dual absorption peaks in UV‐Vis absorption spectra. Photovoltaic properties of P‐SBTBDT were performed by conventional device structure. The OSC device based on polymer: PC71BM (1:1, w/w) exhibited the best PCE of 3.60% with a Voc of 0.67 V, a Jsc of 8.95 mA/cm2, and a FF of 60%. This finding was supported with morphological data and space charge limited current (SCLC) mobilities. The hole mobility of the copolymer was estimated through SCLC model. Although surface roughness of the active layer is really high, mobility of a polymer was found as 7.46 × 10?3 cm2/Vs for optimized device that can be attributed to Se?Se interactions due to the larger, more‐polarizable Se atom. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 528–535  相似文献   

5.
Poly((2‐Alkylbenzo[1,2,3]triazole‐4,7‐diyl)vinylene)s (pBTzVs) synthesized by Stille coupling show different absorption spectra, solid‐state morphology, and photovoltaic performance, depending on straight‐chain versus branched‐chain (pBTzV12 and pBTzV20) pendant substitution. Periodic boundary condition density functional computations show limited alkyl pendant effects on isolated chain electronic properties; however, pendants could influence polymer backbone conjugative planarity and polymer solid film packing. The polymers are electronically ambipolar, with best performance by pBTzV12 with hole and electron transport mobilities of 4.86 × 10?6 and 1.96 × 10?6 cm2 V?1 s?1, respectively. pBTzV12 gives a smooth film morphology, whereas pBTzV20 gives a very different fibrillar morphology. For ITO/PEDOT:PSS/(1:1 w/w polymer:PC71BM)/LiF/Al devices, pBTzV12 gives power conversion efficiency (PCE) up to 2.87%, and pBTzV20 gives up to PCE = 1.40%; both have open‐circuit voltages of VOC = 0.6–0.7 V. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1539–1545  相似文献   

6.
In an effort to design efficient low‐cost polymers for use in organic photovoltaic cells the easily prepared donor–acceptor–donor triad of a either cis‐benzobisoxazole, trans‐benzobisoxazole or trans‐benzobisthiazole flanked by two thiophene rings was combined with the electron‐rich 4,8‐bis(5‐(2‐ethylhexyl)‐thien‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene. The electrochemical, optical, morphological, charge transport, and photovoltaic properties of the resulting terpolymers were investigated. Although the polymers differed in the arrangement and/or nature of the chalcogens, they all had similar highest occupied molecular orbital energy levels (?5.2 to ?5.3 eV) and optical band gaps (2.1–2.2 eV). However, the lowest unoccupied molecular orbital energy levels ranged from ?3.1 to ?3.5 eV. When the polymers were used as electron donors in bulk heterojunction photovoltaic devices with PC71BM ([6,6]‐phenyl C71‐butyric acid methyl ester) as the acceptor, the trans‐benzobisoxazole polymer had the best performance with a power conversion efficiency of 2.8%. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 316–324  相似文献   

7.
Polymers consisting of benzo[1,2‐b:4,5‐b′]dithiophene and thieno[3,4‐b]thiophene units (PTB‐based polymers), either fully or partially containing 4‐fluorophenyl pendants, are synthesized as electron donor materials for inverted‐type polymer solar cells (PSCs). The influence of the 4‐fluorophenyl pendant content on the thermal and optical properties, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), the hole mobilities, and photovoltaic performances are investigated. As the 4‐fluorophenyl pendant content increased, the HOMO and LUMO of the polymers were deepened proportionally and the open‐circuit voltages of the PSCs improved. Incorporation of 4‐fluorophenyl pendants into the polymers also affected the crystallinity, orientation, and compatibility with [6,6]‐phenyl‐C61‐butyric acid methyl ester in the active layers, leading to nonlinearities in the short‐circuit current densities, and fill factors. The incorporation of an appropriate number of 4‐fluorophenyl pendants enhanced the power conversion efficiencies of the PSC devices from 2.25 to 3.96% for identical device configurations. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1586–1593  相似文献   

8.
Three new polymers poly(3,4′′′‐didodecyl) hexaselenophene) (P6S), poly(5,5′‐bis(4,4′‐didodecyl‐2,2′‐biselenophene‐5‐yl)‐2,2′‐biselenophene) (HHP6S), and poly(5,5′‐bis(3′,4‐didodecyl‐2,2′‐biselenophene‐5‐yl)‐2,2′‐biselenophene) (TTP6S) that have the same selenophene‐based polymer backbone but different side chain patterns were designed and synthesized. The weight‐averaged molecular weights (Mw) of P6S, HHP6S, and TTP6S were found to be 19,100, 24,100, and 19,700 with polydispersity indices of 2.77, 1.48, and 1.41, respectively. The UV–visible absorption maxima of P6S, HHP6S, and TTP6S are at 524, 489, and 513 nm, respectively, in solution and at 569, 517, and 606 nm, respectively, in the film state. The polymers P6S, HHP6S, and TTP6S exhibit low band gaps of 1.74, 1.95, and 1.58 eV, respectively. The field‐effect mobilities of P6S, HHP6S, and TTP6S were measured to be 1.3 × 10?4, 3.9 × 10?6, and 3.2 × 10?4 cm2 V?1 s?1, respectively. A photovoltaic device with a TTP6S/[6,6]‐phenyl C71‐butyric acid methyl ester (1:3, w/w) blend film active layer was found to exhibit an open circuit voltage (VOC) of 0.71 V, a short circuit current (JSC) of 5.72 mA cm?2, a fill factor of 0.41, and a power conversion efficiency (PCE) of 1.67% under AM 1.5 G (100 mW cm?2) illumination. TTP6S has the most planar backbone of the tested polymers, which results in strong π–π interchain interactions and strong aggregation, leading to broad absorption, high mobility, a low band gap, and the highest PCE. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
A novel fused ladder alternating D–A copolymer, PIDT–DPP, with alkyl substituted indacenodithiophene (IDT) as donor unit and diketopyrrolopyrrole (DPP) as acceptor unit, was designed and synthesized by Pd‐catalyzed Stille‐coupling method. The copolymer showed good solubility and film‐forming ability combining with good thermal stability. PIDT–DPP exhibited a broad absorption band from 350 to 900 nm with an absorption peak centered at 735 nm. The optical band gap determined from the onset of absorption of the polymer film was 1.37 eV. The highest occupied molecular orbital level of the polymer is as deep as ?5.32 eV. The solution‐processed organic field‐effect transistor (OFETs) was fabricated with bottom gate/top contact geometry. The highest FET hole mobility of PIDT–DPP reached 0.065 cm2 V?1 s?1 with an on/off ratio of 4.6 × 105. This mobility is one of the highest values for narrow band gap conjugated polymers. The power conversion efficiency of the polymer solar cell based on the polymer as donor was 1.76% with a high open circuit voltage of 0.88 V. To the best of our knowledge, this is the first report on the photovoltaic properties of alkyl substituted IDT‐based polymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
We report the synthesis of low bandgap polymers with a difluoroquinoxaline unit by Stille polymerization for use in polymer solar cells (PSCs). A new series of copolymers with 2,3‐didodecyl‐6,7‐difluoro quinoxaline as the electron‐deficient unit and alkyloxybenzo[1,2‐b:4,5‐b′]dithiophene and thiophene as the electron‐rich unit were synthesized. The photovoltaic properties of the devices based on the synthesized polymers revealed that the fluorine atoms at the quinoxaline units aid in decreasing the highest occupied molecular orbital (HOMO) energy levels; this in turn increased the open circuit voltage of the devices. The polymers with long alkyl chains exhibited good solubility that increased their molecular weight, but the power conversion efficiency was low. Efficient polymer solar cells were fabricated by blending the synthesized copolymers with PC71BM, and the PCE increased up to 5.11% under 100 mW cm−2 AM 1.5 illumination. These results demonstrate that the importance of having a control polymer to be synthesized and characterized side by side with the fluorine analogues. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1489–1497  相似文献   

11.
Most of efficient polymer electron acceptors for polymer solar cells (PSCs) are based on naphthalene diimide or perylene diimide as the electron deficient building block. In this paper, for the first time, we report polymer electron acceptors based on fluorinated isoindigo (F‐IID) as the electron deficient building block. We synthesized two polymer electron acceptors consisting of alternating F‐IID unit and thiophene/selenophen unit. They show low‐lying LUMO/HOMO energy levels of –3.69/–5.69 eV, high electron mobilities of 1.31×10–5 cm2·V–1·s–1 and broad absorption spectra with the optical bandgap of 1.61 eV. PSC devices using the two F‐IID‐based polymers as polymer electron acceptors show encouraging power conversion efficiencies (PCEs) of up to 1.50% with an open‐circuit voltage (VOC) of 0.97 V, a short‐circuit current density (JSC) of 2.91 mA·cm–2, and a fill factor (FF) of 53.2%. This work suggests a new kind of polymer electron acceptors based on F‐IID unit.  相似文献   

12.
A series of novel low‐bandgap triphenylamine‐based conjugated polymers ( PCAZCN , PPTZCN , and PDTPCN ) consisting of different electron‐rich donor main chains (N‐alkyl‐2,7‐carbazole, phenothiazine, and cyclopentadithinopyrol, respectively) as well as cyano‐ and dicyano‐vinyl electron‐acceptor pendants were synthesized and developed for polymer solar cell applications. The polymers covered broad absorption spectra of 400–800 nm with narrow optical bandgaps ranging 1.66–1.72 eV. The highest occupied molecular orbital and lowest unoccupied molecular orbital levels of the polymers measured by cyclic voltammetry were found in the range of ?5.12 to ?5.32 V and ?3.45 to ?3.55 eV, respectively. Under 100 mW/cm2 of AM 1.5 white‐light illumination, bulk heterojunction photovoltaic devices composing of an active layer of electron‐donor polymers ( PCAZCN , PPTZCN , and PDTPCN ) blended with electron‐acceptor [6,6]‐phenyl‐C61‐butyric acid methyl ester or [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) in different weight ratios were investigated. The photovoltaic device containing donor PCAZCN and acceptor PC71BM in 1:2 weight ratio showed the highest power conversion efficiency of 1.28%, with Voc = 0.81 V, Jsc = 4.93 mA/cm2, and fill factor = 32.1%. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

13.
Five novel conjugated copolymers ( P1 – P5 ) containing coplanar cyclopentadithiophene (CPDT) units (incorporated with arylcyanovinyl and keto groups in different molar ratios) were synthesized and developed for the applications of polymer solar cells (PSCs). Polymers P1 – P5 covered broad absorption ranges from UV to near infrared (400–900 nm) with narrow optical band gaps of 1.38–1.70 eV, which are compatible with the maximum solar photon reflux. Partially reversible p‐ and n‐doping processes of P1 – P5 in electrochemical experiments were observed, and the proper molecular design for highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) levels of P1 – P5 induced the highest photovoltaic open‐circuit voltage in the PSC devices, compared with those previously reported CPDT‐based narrow‐band‐gap polymers. Powder X‐ray diffraction (XRD) analyses suggested that these copolymers formed self‐assembled π‐π stacking and pseudobilayered structures. Under 100 mW/cm2 of AM 1.5 white‐light illumination, bulk heterojunction PSC devices containing an active layer of electron donor polymers P1 – P5 mixed with electron acceptor [6,6]‐phenyl C61 butyric acid methyl ester (PCBM) in the weight ratio of 1:4 were investigated. The PSC device containing P1 gave the best preliminary result with an open‐circuit voltage of 0.84 V, a short‐circuit current of 2.36 mA/cm2, and a fill factor of 0.38, offering an overall power conversion efficiency (PCE) of 0.77% as well as a maximal quantum efficiency of 23% from the external quantum efficiency (EQE) measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2073–2092, 2009  相似文献   

14.
A set of novel conjugated polyfluorene co‐ polymers, poly[(9,9′‐didecylfluorene‐2,7‐diyl)‐co‐(4,7′‐di‐2‐thienyl‐ 2′,1′,3′‐benzothiadiazole‐5,5‐diyl)‐co‐(pyrene‐1,6‐diyl)], are synthesized via Pd(II)‐mediated polymerization from 2,7‐bis(4′,4′,5′, 5′‐tetramethyl‐1,3,2‐dioxaborolan‐2‐yl)‐9,9′‐di‐n‐decylfluorene, 4, 7‐di(2‐bromothien‐5‐yl)‐2,1,3‐benzothiadiazole, and 1,6‐dibromopyrene with a variety of monomer molar ratios. The field‐effect carrier mobilities and optical, electrochemical, and photovoltaic properties of the copolymers are systematically investigated. The hole mobilities of the copolymers are found to be in the range 7.0 × 10?5 ? 8.0 × 10?4 cm2 V?1 s?1 and the on/off ratios were 8 × 103 ? 7 × 104. Conventional polymer solar cells (PSCs) with the configuration ITO/PEDOT:PSS/polymer:PC71BM/LiF/Al are fabricated. Under optimized conditions, the polymers display power conversion efficiencies (PCEs) for the PSCs in the range 1.99–3.37% under AM 1.5 illumination (100 mW cm?2). Among the four copolymers, P2, containing a 2.5 mol % pyrene component incorporated into poly[9,9′‐didecylfluorene‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)] (PFDTBT) displays a PCE of 3.37% with a short circuit current of 9.15 mA cm?2, an open circuit voltage of 0.86 V, and a fill factor of 0.43, under AM 1.5 illumination (100 mW cm?2). © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

15.
A series of novel poly(thienylene vinylene) derivatives (PTVs), P20‐P24 , with imide substituents were designed and synthesized by palladium‐catalyzed Stille coupling polymerization, wherein the imide substituent density was decreased gradually, which allowed us to explicitly study the effect of electron‐deficient substituent on the optical, electrochemical, and photovoltaic properties of the PTVs. All of the four polymers showed broad absorption bands with optical bandgaps between1.66 and 1.78 eV. By reducing density of electron‐deficient imide group, the LUMO energy levels of the polymers could be tuned gradually from ?3.75 to ?3.43 eV, with HOMO levels upshifted from ?5.64 to ?5.16 eV. Bulk heterojunction solar cells with the polymers as donor and PC71BM as acceptor demonstrated very different excitons dissociation behavior. With decreasing the imide‐fused unit density, the open‐circuit voltage (VOC) values in the devices decreased from 0.78 to 0.62 V, whereas the short‐circuit currents (JSC) increased from 0 to 2.26 mA cm?2 and then decreased to 1.01 mA cm?2. By adjusting the electron‐withdrawing imide substituent density, power conversion efficiency of the PTVs‐based solar cells can be increased to four times, reached 0.86%. To the best of our knowledge, this is the first systematic study of the relationship between molecular energy level and photovoltaic properties of PTVs. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4975–4982  相似文献   

16.
Novel alkoxy anthracene (ODA)‐based polymeric semiconductors were designed for polymer solar cell applications. Alkoxyanthracene, which contains many π electrons and electron donating group, was easily synthesized. The copolymers, poly(alkoxy anthracene‐alt‐thiophene benzothiadiazole thiophene) poly(ODA‐TBT) and poly(alkoxy anthracene‐alt‐benzothiadiazole) poly(ODA‐BT), have been obtained by Suzuki coupling polymerization. Both polymers have ODA unit as a donor and benzothiadiazole as an acceptor. ODA‐TBT has thiophene linkages between ODA and benzothiadiazole. The optical, thermal, and electrochemical properties have been investigated by UV–visible absorption, thermal gravimetric analysis, differential scanning calorimetry, and CV. Organic thin‐film transistor using polymers showed that the hole mobility of poly(ODA‐alt‐TBT) was around 3.6 × 10?3 cm2/Vs with on/off ratio of 9.91 × 105 while that of poly(ODA‐alt‐BT) was around 1.21 × 10?2 cm2/Vs with on/off ratio of 2.64 × 106. Organic photovoltaic performance based on polymers were evaluated with a configuration of ITO/PEDOT:PSS/active layer/LiF/Al. Poly(ODA‐TBT) exhibits a short circuit current (Jsc) of 3.9 mA/cm2 and power conversion efficiency (PCE) of 1.4%, and poly(ODA‐BT) exhibits the Jsc of 6.4 mA/cm2 and PCE of 2.2%. The better device performance of poly(ODA‐BT) is attributed to its charge transfer ability and enhanced mobility and crystallinity although poly(ODA‐BT) does not have extended π‐conjugation due to twisted structure compared with poly(ODA‐TBT). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1306–1314  相似文献   

17.
A series of three new low bandgap donor–acceptor–donor–acceptor/ (D–A–D–A/) polymers have been successfully synthesized based on the combination of isoindigo as the electron‐deficient acceptor and 3,4‐ethylenedioxythiophene as the electron‐rich donor, followed by CH‐arylation with different acceptors (4,7‐dibromo[c][1,2,5]‐(oxa, thia, and/or selena)diazole ( 4a‐c )). These polymers were used as donor materials for photovoltaic applications. All of the polymers are highly stable and show good solubility in chlorinated solvents. The highest power conversion efficiency of 1.6% was achieved in the bulk heterojunction photovoltaic device that consisted of poly ((E)?6‐(7‐(benzo‐[c][1,2,5]‐thiadiazol‐4‐yl)?2,3‐dihydrothieno‐[3,4‐b][1,4]dioxin‐5‐yl)?6′‐(2,3‐dihydrothieno‐[3,4‐b][1,4]‐dioxin‐5‐yl)?1,1′‐bis‐(2‐octyldodecyl)‐[3,3′‐biindolinylidene]‐2,2′‐dione) as the donor and PC61BM as the acceptor, with a short‐circuit current density (Jsc) of 8.10 mA/cm2, an open circuit voltage (Voc) of 0.56 V and a fill factor of 35%, which indicates that these polymers are promising donors for polymer solar cell applications. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2926–2933  相似文献   

18.
Two model polymers, containing fluorene as an electron‐donating moiety and benzothiadiazole (BT) as an electron‐accepting moiety, have been synthesized by Suzuki coupling reaction. Both polymers are composed of the same chemical composition, but the BT acceptor can be either at a side‐chain (i.e., S‐polymer) or along the polymer main chain (i.e., M‐polymer). Their optical, electrochemical, and photovoltaic properties, together with the field‐effect transistor (FET) characteristics, have been investigated experimentally and theoretically. The FET carrier mobilities were estimated to be 5.20 × 10?5 and 3.12 × 10?4 cm2 V?1 s?1 for the S‐polymer and M‐polymer, respectively. Furthermore, polymeric solar cells (PSCs) with the ITO/PEDOT:PSS/S‐polymer or M‐polymer:PC71BM(1:4)/Al structure were constructed and demonstrated to show a power conversion efficiency of 0.82 and 1.24% for the S‐polymer and M‐polymer, respectively. The observed superior device performances for the M‐polymer in both FET and PSCs are attributable to its relatively low band‐gap and close molecular packing for efficient solar light harvesting and charge transport. This study provides important insights into the design of ideal structure–property relationships for conjugate polymers in FETs and PSCs. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
A new carbazole‐based electron accepting unit, 5‐(2,7‐dibromo‐9H‐carbazol‐9‐yl)benzo[a]phenazine (CBP), was newly designed and synthesized as the acceptor part of donor‐acceptor type low band‐gap polymers for polymer solar cells. The CBP was copolymerized with electron donating monomers such as benzo[1,2‐b:4,5‐b′]dithiophene (BDT) or 4,8‐bis(2‐octyl‐2‐thienyl)‐benzo[1,2‐b:4,5‐b′]dithiophene (BDTT) through Stille cross‐coupling polymerization, and produced two alternating copolymers, PBDT‐CBP and PBDTT‐CBP. An alternating copolymer (PBDT‐CBZ) consisted of 2,7‐dibromo‐9‐(heptadecan‐9‐yl)‐9H‐carbazole (CBZ) and BDT units was also synthesized for comparison. PBDT‐CBZ showed the maximum absorption at 430 nm and did not show absorption at wavelengths longer than 513 nm. However, CBP containing polymers (PBDT‐CBP and PBDTT‐CBP) showed a broad absorption between 300 and 850 nm due to the intramolecular charge transfer interaction between the electron donating and accepting blocks in the polymeric backbone. Bulk heterojunction photovoltaic devices were fabricated using the synthesized polymers as electron donors and [6,6]‐phenyl C71‐butyric acid methyl ester (PC71BM) as electron acceptor. One of these devices showed a power conversion efficiency of 2.33%, with an open‐circuit voltage of 0.81 V, a short‐circuit current of 6.97 mA/cm2, and a fill factor (FF) of 0.41 under air mass (AM) 1.5 global (1.5 G) illumination conditions (100 mW/cm2). © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013, 51, 2354–2365  相似文献   

20.
Three simple structured D‐A copolymers, PBTBTz‐1 , PBTBTz‐2 , and PBTBTz‐3 , containing bithiophene (BT) donor unit and bithiazole (BTz) acceptor unit with different alkyl chain length were synthesized by the Pd‐catalyzed Stille‐coupling method. The copolymers were characterized by thermogravimetric analysis, UV–vis absorption, electrochemical cyclic voltammetry, and photovoltaic measurements. The results indicate that the introduction of BTz unit to the polythiophene main chain effectively decreases highest occupied molecular orbital levels of the copolymers and increases the open circuit voltage (Voc) of polymer solar cells (PSCs) based on the copolymers as donor, and the alkyl chain length influences the photovoltaic properties of the polymers significantly. The PSCs based on PBTBTz‐2 and PBTBTz‐3 show higher Voc up to 0.77 and 0.81 V, respectively. The power conversion efficiency of the PSC based on PBTBTz‐2 :PC70BM = 1:1(w/w) reached 2.58% with short circuit current of 8.70 mA/cm2, under the illumination of AM1.5, 100 mW/cm2. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号