首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microparticle‐based drug delivery is a promising technology for small volume bioassay platforms. The general utilization of the drug‐loaded microparticles in the in vitro bioassay platforms requires the drug loading method, which should impregnate the general drug types (e.g., water insoluble) with high payload into the variously designed microparticles. Loading the drug into the prefabricated microparticles using solvent evaporation satisfies the requirement. However, similar to the “coffee‐ring effect,” drugs are loaded in a seriously nonuniform manner, caused by the capillary flow during the evaporation process. Here, it is presented that the freeze‐drying is an efficient way to load uniform and high amount of the drug into the prefabricated microparticles. It is demonstrated that freezing solvent can block the capillary flow during the solvent removal process, improving the loading uniformity. The delivered amount of drugs is linearly proportional to the initial loading amount of drugs. Also, this drug loading method is shown to be applied to the various drug types and the prefabricated microparticles with different properties. Considering many challenges to suppress the “coffee‐ring effect” that induces nonuniform impregnation/deposition, the proposed concept can be applied not only for microparticle‐based drug delivery but also for uniform coating applications (e.g., thin‐film coating, DNA/protein microarray).  相似文献   

2.
A dendritic amphiphilic block copolymer H40‐poly(d,l ‐lactide)‐block‐d‐α‐tocopheryl polyethylene glycol 1000 succinate (H40‐PLA‐b‐TPGS) is synthesized, which is then employed to develop a system of nanoparticles (NPs) loaded with docetaxel (DTX) as a model drug for cancer treatment due to its higher drug‐loading content and drug encapsulation efficiency, smaller particle size, faster drug release, and higher cellular uptake in comparison to the linear PLA polymer NPs and PLA‐b‐TPGS copolymer NPs. The drug‐loaded NPs are prepared by a modified nanoprecipitation method and characterized in terms of size and size distribution, surface morphology, drug release profile, and physical state of DTX. Cellular uptake of coumarin 6‐loaded NPs by MCF‐7 cancer cells is determined by flow cytometry and confocal laser scanning microscopy. The antitumor efficacy of the drug‐loaded NPs is investigated in vitro by MTT assay and in vivo by xenograft tumor model. The 72 h IC50 of the drug formulated in the PLA, PLA‐b‐TPGS, and H40‐PLA‐b‐TPGS NPs is found to be, 1.5 ± 0.3, 0.9 ± 0.1, and 0.15 ± 0.06 μg mL?1, which are 7.3, 12.2, and 73.3‐fold effective than 11.0 ± 1.2 μg mL?1 for Taxotere, respectively. Such advantages are further confirmed by the measurement of the tumor size and weight.  相似文献   

3.
Graphene—2D carbon—has received significant attention thanks to its electronic, thermal, and mechanical properties. Recently, nano‐graphene (nGr) has been investigated as a possible platform for biomedical applications. Here, a polymer‐coated nGr to deliver drugs to glioblastoma after systemic administration is reported. A biodegradable, biocompatible poly(lactide) (PLA) coating enables encapsulation and controlled release of the hydrophobic anticancer drug paclitaxel (PTX), and a hydrophilic poly(ethylene glycol) (PEG) shell increases the solubility of the nGr drug delivery system. Importantly, the polymer coating mediates the interaction of nGr with U‐138 glioblastoma cells and decreases cytotoxicity compared with pristine untreated nGr. PLA‐PEG‐coated nGr is also able to encapsulate PTX at 4.15 wt% and sustains prolonged PTX release for at least 19 d. PTX‐loaded nGr‐PLA‐PEGs are shown to kill up to 20% of U‐138 glioblastoma cells in vitro. Furthermore, nGr‐PLA‐PEG and CNT‐PLA‐PEG, two carbon nanomaterials with different shapes, are able to kill U‐138 in vitro as well as free PTX at significantly lower doses of drug. Finally, in vivo biodistribution of nGr‐PLA‐PEG shows accumulation of nGr in intracranial U‐138 glioblastoma xenografts and organs of the reticuloendothelial system.  相似文献   

4.
Owing to its higher concentration in cancer cells than that in the corresponding normal cells, glutathione (GSH) provides an effective and flexible mechanism to design drug delivery systems. Here a novel GSH‐responsive mesoporous silica nanoparticle (MSN) is reported for controlled drug release. In this system, manganese dioxide (MnO2) nanostructure, formed by the reduction of KMnO4 on the surface of carboxyl‐functionalized MSN can block the pores (MSN@MnO2). By a redox reaction, the capped MnO2 nanostructure can dissociate into Mn2+ in the presence of GSH molecules. The blocked pores are then uncapped, which result in the release of the entrapped drugs. As a proof‐of‐concept, doxorubicin (DOX) as model drug is loaded into MSN@MnO2. DOX‐loaded MSN@MnO2 shows an obvious drug release in 10 × 10?3 m GSH, while no release is observed in the absence of GSH. In vitro studies using human hepatocellular liver carcinoma cell line (HepG2) prove that the DOX‐loaded MSN@MnO2 can entry into HepG2 cells and efficiently release the loaded DOX, leading to higher cytotoxicity than to that of human normal liver cells (L02). It is believed that further developments of this GSH‐responsive drug delivery system will lead to a new generation of nanodevices for intracellular controlled delivery.  相似文献   

5.
Multifunctional nanoparticles for selectively targeting tumor cells and effectively delivering multiple drugs are urgently needed in cancer therapy. Here, a dual‐drug delivery system is prepared, based on functionalized hollow mesoporous silica nanoparticles (HMSNs). Doxorubicin (DOX) hydrochloride is loaded into the hollow core, and dichloro(1,2‐diaminocyclohexane)platinum (II) (DACHPt) is stored in the pores of the shell by the coordination interaction with the carboxyl groups modified on the pore walls, which also serves as barriers to control the DOX release. Detailed studies in vitro indicate that the DACHPt release is triggered by Cl? through the cleavage of the coordination interaction, and the DOX release depends on the release rate of DACHPt and the environmental pH value. The surface of the mechanized nanoparticles is also modified by transferrin (Tf) to achieve the tumor specificity. Compared with individual drug delivery systems, the dual‐drug delivery system shows synergistic efficacy on the cell cytotoxicity (combination index = 0.30), resulting in improved tumor cell killing. The present dual‐drug delivery system provides a promising strategy to develop controlled and targeted combination therapies for efficient cancer treatment.  相似文献   

6.
As a kind of natural protein, keratin is widely investigated in the biomedical field. Here, for the first time, a keratin‐based prodrug (PK‐SS‐D) is designed for tumor intracellular reduction triggered drug delivery, by conjugating doxorubicin (DOX) onto poly(ethylene glycol) modified keratin (PEGylated keratin, PK) with a bioreducible disulfide linkage. The protein‐drug conjugate prodrug, with a drug content of 20%, can self‐assemble into micelles with a mean hydrodynamic diameter of 175 nm and a narrow distribution. The in vitro controlled release profiles reveal the reduction triggered thiolated DOX (DOX‐SH) release behavior of the PK‐SS‐D micelles, with a cumulative drug release up to 52% within 10 d in the simulated tumor microenvironment in a sustained releasing mode, and a low drug leakage of 17% in the simulated normal physiological medium. The enhanced tumor growth inhibition of the proposed PK‐SS‐D prodrug micelles is revealed by the methyl tetrazolium (MTT) assays, although the released DOX‐SH prodrug possesses a lower tumor growth inhibition than DOX.  相似文献   

7.
Eight fluorinated nanoparticles (NPs) are synthesized, loaded with doxorubicin (DOX), and evaluated as theranostic delivery platforms to breast cancer cells. The multifunctional NPs are formed by self‐assembly of either linear or star‐shaped amphiphilic block copolymers, with fluorinated segments incorporated in the hydrophilic corona of the carrier. The sizes of the NPs confirm that small circular NPs are formed. The release kinetics data of the particles reveals clear hydrophobic core dependence, with longer sustained release from particles with larger hydrophobic cores, suggesting that the DOX release from these carriers can be tailored. Viability assays and flow cytometry evaluation of the ratios of apoptosis/necrosis indicate that the materials are non‐toxic to breast cancer cells before DOX loading; however, they are very efficient, similar to free DOX, at killing cancer cells after drug encapsulation. Both flow cytometry and confocal microscopy confirm the cellular uptake of NPs and DOX‐NPs into breast cancer cells, and in vitro 19F‐MRI measurement shows that the fluorinated NPs have strong imaging signals, qualifying them as a potential in vivo contrast agent for 19F‐MRI.  相似文献   

8.
Constructing novel multimodal antitumor therapeutic nanoagents has attracted tremendous recent attention. In this work, a new drug‐delivery vehicle based on human‐serum‐albumin (HSA)‐coated Prussian blue nanoparticles (PB NPs) is synthesized. It is demonstrated that doxorubicin (DOX)/HSA is successfully loaded after in situ polymerization of dopamine onto PB NPs, and the PB@PDA/DOX/HSA NPs are highly compatible and stable in various physiological solutions. The NPs possess strong near‐infrared (NIR) absorbance, and excellent capability and stability of photothermal conversion for highly efficient photothermal therapy applications. Furthermore, a bimodal on‐demand drug release sensitively triggered by pH or NIR irradiation has been realized, resulting in a significant chemotherapeutic effect due to the preferential uptake and internalization of the NPs by cancer cells. Importantly, the thermochemotherapy efficacy of the NPs has been examined by a cell viability assay, revealing a remarkably superior synergistic anticancer effect over either monotherapy. Such multifunctional drug‐delivery systems composed of approved materials may have promising biomedical applications for antitumor therapy.  相似文献   

9.
Pulmonary administration offers excellent advantages over conventional drug delivery routes, including increasing therapeutics bioavailability, and avoiding long‐term safety issues. Formulations of nano‐in‐micro dry powders for lung delivery are engineered using (S)‐ibuprofen as a model drug. These biodegradable formulations comprise nanoparticles of drug‐loaded POxylated polyurea dendrimers coated with chitosan using supercritical‐fluid‐assisted spray drying. The formulations are characterized in terms of morphology, particle‐size distribution, in vitro aerodynamic particle pulmonary distribution, and glutathione‐S‐transferase assay. It is demonstrated that ibuprofen‐loaded nanoparticles can be successfully incorporated into microspheres with adequate aerodynamic properties, mass median aerodynamic diameter (1.86–3.83 μm), and fine particle fraction (28%–45%), for deposition into the deep lung. The (S)‐ibuprofen dry powder formulations show enhanced solubility, high swelling behavior and a sustained drug release at physiologic pH. Also, POxylated polyureas decrease the (S)‐ibuprofen toxic effect on cancer cellular growth. The 3‐(4,5‐dimethylthiazol‐2‐yl)‐5‐(3‐carboxymethoxyphenyl)‐2‐(4‐sulfophenyl)‐2H‐tetrazolium (MTS) assays show no significant cytotoxicity on the metabolic activity of human lung adenocarcinoma ephithelial (A549) cell line for the lowest concentration (1 × 10?3 m ), even for longer periods of contact with the cells (up to 120 h), and in the normal human dermal fibroblasts cell line the toxic effect is also reduced.  相似文献   

10.
B‐precursor acute lymphoblastic leukemia (B‐ALL) lymphoblast (blast) internalization of anti‐cytokine receptor‐like factor 2 (CRLF2) antibody‐armored biodegradable nanoparticles (AbBNPs) are investigated. First, AbBNPsaere synthesized by adsorbing anti‐CRLF2 antibodies to poly(D,L‐lactide‐co‐glycolide) (PLGA) nanoparticles of various sizes and antibody surface density (Ab/BNP) ratios. Second, AbBNPs are incubated with CRLF2‐overexpressing (CRLF2+) or control blasts. Third, internalization of AbBNPs by blasts is evaluated by multicolor flow cytometry as a function of receptor expression, AbBNP size, and Ab/BNP ratio. Results from these experiments are confirmed by electron microscopy, fluorescence microscopy, and Western blotting. The optimal size and Ab/BNP for internalization of AbBNPs by CRLF2+ blasts is 50 nm with 10 Ab/BNP and 100 nm with 25 Ab/BNP. These studies show that internalization of AbBNPs in childhood B‐ALL blasts is AbBNP size‐ and Ab/BNP ratio‐dependent. All AbBNP combinations are non‐cytotoxic. It is also shown that CD47 is very slightly up‐regulated by blasts exposed to AbBNPs. CD47 is “the marker of self” overexpressed by blasts to escape phagocytosis, or “cellular devouring”, by beneficial macrophages. The results indicate that precise engineering of AbBNPs by size and Ab/BNP ratio may improve the internalization and selectivity of future biodegradable nanoparticles for the treatment of leukemia patients, including drug‐resistant minority children and Down's syndrome patients with CRLF2+B‐ALL.  相似文献   

11.
Thermo‐chemotherapy combining photothermal therapy (PTT) with chemotherapy has become a potent approach for antitumor treatment. In this study, a multifunctional drug‐delivery nanoplatform based on polyethylene glycol (PEG)‐modified mesoporous silica‐coated bismuth selenide nanoparticles (referred to as Bi2Se3@mSiO2‐PEG NPs) is developed for synergistic PTT and chemotherapy with infrared thermal (IRT) imaging of cancer cells. The product shows no/low cytotoxicity, strong near‐infrared (NIR) optical absorption, high photothermal conversion capacity, and stability. Utilizing the prominent photothermal effect, high‐contrast IRT imaging and efficient photothermal killing effect on cancer cells are achieved upon NIR laser irradiation. Moreover, the successful mesoporous silica coating of the Bi2Se3@mSiO2‐PEG NPs cannot only largely improve the stability but also endow the NPs high drug loading capacity. As a proof‐of‐concept model, doxorubicin (DOX) is successfully loaded into the NPs with rather high loading capacity (≈50.0%) via the nanoprecipitation method. It is found that the DOX‐loaded NPs exhibit a bimodal on‐demand pH‐ and NIR‐responsive drug release property, and can realize effective intracellular drug delivery for chemotherapy. The synergistic thermo‐chemotherapy results in a significantly higher antitumor efficacy than either PTT or chemotherapy alone. The work reveals the great potential of such core–shell NPs as a multifunctional drug‐delivery nanosystem for thermo‐chemotherapy.  相似文献   

12.
Poly(D,L-lactide-co-glycolide) (PLGA, 75/25) microspheres loaded with bovine serum albumin (BSA) were prepared using the W/O/W emulsification solvent evaporation technique. The cytotoxicity in vitro of PLGA microspheres was investigated and the BSA release from PLGA microspheres was also studied. Scanning electron micrographs showed that the PLGA microspheres were regular and the surface was smooth. BSA release typically began with an initial burst and then became steady. Analysis of the PLGA microspheres cytotoxicity showed that they had no cytotoxic effect and behaved very similar to the negative control of polystyrene. The hemolysis rate of the PLGA microspheres was 0.148%, suggesting it had no potential to induce hemolysis. The results show that PLGA microspheres may provide a useful controlled release protein drug system for used in pharmaceutics.  相似文献   

13.
Although progress in the use carbon nanotubes in medicine has been most encouraging for therapeutic and diagnostic applications, any translational success must involve overcoming the toxicological and surface functionalization challenges inherent in the use of such nanotubes. Ideally, a carbon‐nanotube‐based drug delivery system would exhibit low toxicity, sustained drug release, and persist in circulation without aggregation. Here, carbon nanotubes (CNTs) coated with a biocompatible block‐co‐polymer composed of poly(lactide)‐poly(ethylene glycol) (PLA‐PEG) are reported to reduce short‐term and long‐term toxicity, sustain drug release of paclitaxel (PTX), and prevent aggregation. The copolymer coating on the surface of CNTs significantly reduces in vitro toxicity. Moreover, the coating reduces the in vitro inflammatory response. Compared to non‐coated CNTs, in vivo studies show no long‐term inflammatory response with CNT coated with PLA‐PEG (CLP) and the surface coating significantly decreases acute toxicity by doubling the maximum tolerated dose in mice. In vivo biodistribution and histology studies suggest a lower degree of aggregation in tissues.  相似文献   

14.
The integration of unique functionality into mesoporous organosilica hybrid carriers is an important issue in solving the challenges of dual/multi delivery for combined therapy with drugs with a distinct therapeutic effects. Newly designed mesoporous organosilica hybrid microcarriers (HMCs) are synthesized on the basis of the triblock‐copolymer‐templated sol–gel method. The synthesized HMCs, which integrate both heteroaromatic pyridine and diurea functionalities, are combined in a mesoporous organosilica hybrid network to design functional hybrid microcarriers with a range of mechanisms for the pH‐triggered release of two drugs. The drugs include the hydrophilic anticancer therapeutic agent 5‐fluorouracil (5‐FU) and the non‐steroidal hydrophobic anti‐inflammatory drug ibuprofen (IBU). 5‐FU and IBU are encapsulated in the HMCs using multiple hydrogen bonding and electrostatic interaction sites and are delivered under a range of pH conditions. The release of 5‐FU and IBU is tested at pH 5.5 and 7.4. The results show that the release is sensitive to pH. The antitumor activity of the released 5‐FU is evaluated using the MCF‐7 cell line. The released 5‐FU has the capacity to kill cancer cells under acidic pH conditions.  相似文献   

15.
The strategy to efficiently deliver antitumor drugs via nanocarriers to targeted tumor sites and achieve controllable drug release is attracting great research interest in cancer therapy. In this study, a novel type of disulfide‐bonded poly(vinylcaprolactam) (PVCL)‐based nanogels with tunable volume phase transition temperature and excellent redox‐labile property are prepared. The nanogels are hydrophilic and swell at 37 °C, whereas under hyperthermia (e.g., 41 °C), the nanogels undergo sharp hydrophilic/hydrophobic transition and volume collapse, which enhances the cellular uptake and drug release. The incorporation of disulfide bond linkers endows the nanogels with an excellent disassembly property in reducing environments, which greatly facilitates drug release in tumor cells. Nanogels loaded with doxorubicin (DOX) (DOX‐NGs) (DOX‐NGs) are stable in physiological conditions with low drug leakage (15% in 48 h), while burst release of DOX (92% in 12 h) can be achieved in the presence of 10 × 10?3 m glutathione and under hyperthermia. The DOX‐NGs possess improved cell killing efficiency under hyperthermia (IC50 decreased from 1.58 μg mL?1 under normothermia to 0.5 μg mL?1). Further, the DOX‐NGs show a pronounced tumor inhibition rate of 46.6% compared with free DOX, demonstrating that this new dual‐responsive nanogels have great potential as drug delivery carriers for cancer therapy in vivo.  相似文献   

16.
Carbon‐based nanomaterials could afford versatile potential applications in biomedical optical imaging and as nanoparticle drug carriers, owing to their promising optical and biocompatible capabilities. In this paper, it is first found that amphipathic cetylpyridinium chloride (CPC)‐stabilized oil‐soluble carbon dots (CDs) could self‐assemble into hydrophilic CDs clusters with hydrophobic core under ultrasound, in which CPC acts as carbon source, stabilizer, and phase transfer agent. Next, the size‐control (for size‐dependent passive tumor targeting) and doxorubicin (DOX) uploading of aqueous CDs clusters, and subsequent surface charge modification via overcoating with cRGD‐ and octylamine‐modified polyacrylic acid (cRGD‐PAA‐OA) (reversing their surface charges into negative and introducing active tumor‐targeting ability) are explored systematically. Based on this sequential administration mode, CDs‐cluster‐DOX/cRGD‐PAA‐OA nanocomposites exhibit selective human malignant glioma cell line (U87MG) tumor targeting. In in vitro drug release experiments, the nanocomposites could release DOX timely. Owning to the dual tumor targeting effects and seasonable drug release, CDs‐cluster‐DOX/cRGD‐PAA‐OA show remarkably tumor targetability and enhanced antitumor efficacy (and reduced adverse reaction), comparing to free DOX in animal models. These results indicate that fabricating nanocomposite via co‐self‐assembly strategy is efficient toward drug delivery system for tumor‐targeting theranostic.  相似文献   

17.
An acid‐labile doxorubicin dimer (D‐DOX) is designed as drug–drug conjugate for tumor intracellular pH‐triggered release, by conjugating doxorubicin (DOX) with adipic acid dihydrazide (ADH). The dimer‐based surfactants modified with polyethylene glycol (PEG), DOX‐ADH‐DOX‐PEG or are synthesized by mono‐PEGylation and bi‐PEGylation, respectively. Then the prodrug nanoparticles are fabricated with different drug contents via dialyzing the mixture solution of D‐DOX and the PEGylated surfactants in dimethyl sulfoxide (DMSO) with different mass ratios against water. It is found that the smaller prodrug nanoparticles (142–163 nm) could be obtained with the mono‐PEGylated surfactant, than those of 157–225 nm with the bi‐PEGylated surfactant. Furthermore, the mono‐PEGylated surfactant results in a higher drug content of 51% due to their lower PEG contents. All prodrug nanoparticles could release DOX completely within 36 h at pH 5.0, with the premature drug leakage of less than 10% at pH 7.4. The 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assays demonstrate the proposed drug self‐delivery system possessed an enhanced anticancer efficacy against HepG2 cells than the free DOX.  相似文献   

18.
POXylated polyurea dendrimer nanoparticles (PUREG4OOx48) are loaded with sildenafil (SDF) by a supercritical carbon dioxide–assisted (scCO2) impregnation. Further supercritical CO2-assisted spray drying (SASD) leads to hybrid nano-in-micro dry powder formulations that are investigated aiming at efficient pulmonary delivery of SDF in pulmonary arterial hypertension treatment. This is the first report of the production of poly(D,L-lactide-co-glycolide)-cholesterol (PLGA-Chol) microparticles processed by SASD. The optimized formulation of nano-in-microparticles is composed of PLGA, Chol, and PUREG4OOx48, loaded with SDF solutions in a 77:23 ratio (PLGA-Chol:dendrimer, w/w). The dry powders are fully characterized and found to be highly biodegradable and biocompatible, and the SDF release profile evaluates under different pH values. The median mass average diameter (MMAD) of the nano-in-micro systems varies between 2.57 and 5 µm and the fine particle fraction (FPF) between 36% and 29% for PUREG4OMeOx48[PLGA-Chol] and PUREG4OEtOx48[PLGA-Chol], respectively. The data validate the potential use of these new formulations in inhalation therapy. In vitro studies are also carried out in order to evaluate the effect of the free drug in cell viability and formulations cytotoxicity.  相似文献   

19.
The current study aims at preparing biocompatible hybrid organic–inorganic ruthenium core–shell nanostructures (RuNPs) coated with polyvinylpyrrolidone (PVP) and polyoxyethylene stearate (POES). Thereafter, the core/shell RuNPs are loaded with doxorubicin (to form RuPDox) with a loading efficiency > 60%. RuPDox possesses exceptional stability and pH‐responsive release kinetics with approx. 50% release of doxorubicin at up to 1 h exposure to an acidic endosomal environment. The cytotoxic effects of RuPDox are tested in vitro against breast cancer (MDA‐MB‐231), ovarian cancer (A2780), and neuroblastoma (UKF‐NB‐4) cells. Notably, although RuNPs have slight cytotoxicity only, RuPDox causes a synergistic enhancement of cytotoxicity when compared to free doxorubicin. Significant increase in free radicals formation, enhanced activity of executioner caspases 3/7, and higher expression of p53 and metallothionein is further identified due to the RuPDox treatment. Single‐cell gel electrophoresis reveals no additional contribution of RuNPs to genotoxicity of doxorubicin. Moreover, RuPDox promotes significantly increased stability of doxorubicin in human plasma and pronounced hemocompatibility assayed on human red blood cells. The results imply a high potential of biocompatible hybrid RuNPs with PVP‐POES shell as versatile nanoplatforms to enhance the efficiency of cancer treatment.  相似文献   

20.
《Current Applied Physics》2019,19(11):1204-1210
In this work, doxorubicin (DOX) was intercalated into layered nanohydroxyapatite (LHAp). The drug loaded LHAp (DOX@LHAp) was then mixed with poly(lactic-co-glycolic acid) (PLGA) and electrospun to yield DOX@LHAp/PLGA composite scaffolds. As control, needle-like nanohydroxyapatite (nHAp) was also used to make an DOX@nHAp/PLGA composite scaffold and bare DOX was used to fabricate DOX/PLGA scaffold. The morphology, release behavior of DOX, and capability to inhibit cancer cells were assessed. The addition of DOX-loaded nHAp to PLGA causes a slight decrease in the average fiber diameter of DOX@LHAp/PLGA as compared to PLGA. The in vitro drug release tests reveal a much faster release of DOX from DOX/PLGA than DOX@LHAp/PLGA. Moreover, DOX@LHAp/PLGA displays a more sustainable release over DOX@nHAp/PLGA due to the storage of DOX in the gallery of LHAp, which is further proved by their cancer cell inhibition results. We believe that the DOX@LHAp/PLGA scaffold has potential as an implantable drug delivery system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号