首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gold nanoparticles (AuNPs) are functionalized with a thermoresponsive polymer shell of a cross‐linked poly(2‐(2‐methoxyethoxy)ethyl methacrylate) (P(MEO2MA)). To provide a covalent attachment of the polymer to the NP surface, AuNPs are first modified using butanoic acid to develop the encapsulation with the biocompatible thermoresponsive polymer formed by free‐radical precipitation polymerization. Both the MEO2MA concentration and the shell cross‐linking density can be varied and, in turn, the thickness and the shells' free volume can be fine‐tuned. By downscaling the size of the polymeric shell, the lower critical solution temperature (LCST) is decreased. The LCST in the nanohybrids changes from 19.1 to 25.6 °C when increasing the MEO2MA content; it reaches almost 26 °C for P(MEO2MA) (bulk). The maximum decrease in the volume of the nanohybrids is around 40%, resulting in a modification of the light scattering properties of the system and causing a change in the turbidity of the gel network. The sizes of the nanohybrids are characterized using both transmission electron microscopy and dynamic light scattering measurements. Optical properties of the colloidal systems are determined using the derived count rate measurements as an alternative to absorbance or transmittance measurements, confirming the colloidal stability of the nanohybrid systems.  相似文献   

2.
We present a study of resonant optical properties of gold‐protected silver nanoisland films. Silver nanoislands were grown on a glass substrate using out‐diffusion technique, the growth was followed by the deposition of nanometer‐thick gold coatings. Scanning electron microscopy and optical spectroscopy were used to characterize morphology and extinction spectra of the grown combined silver–gold nanostructures. Micro Raman spectroscopy of the combined nanoislands has demonstrated their signal enhancement factor exceeding that one of the initial silver nanoislands.  相似文献   

3.
Core–shell bimetallic Au@Ni nanoparticles, with gold cores and thin nickel shells with overall size less than 10 nm, are synthesized and stabilized in pure cubic (fcc) and hexagonal (hcp) phase. Due to their unique crystal, electronic, and geometric structure, they show interesting magnetic and chemical properties. The Au@Nifcc is magnetic, whereas Au@Nihcp is non‐magnetic. Both the bimetallic nanostructures are stable to surface oxidation until 150 °C and show excellent catalytic activity for p‐nitrophenol reduction reaction.  相似文献   

4.
Colloidal molecules, or more general supraparticles, i.e., particles which are themselves assembled of smaller nanoparticles in a defined way, are known to be synthesizable via bottom‐up assembly techniques in colloidal dispersion. The amount of synthesizable particles is mostly limited to milligrams. Herein, a bottom‐up‐programed, triggerable top‐down process is reported to obtain core–satellite supraparticles, i.e., particles composed of a larger core particle surrounded by smaller satellite particles. The key is to prepare a nanostructured, microparticulate powder into which defined burst behavior is preprogramed. Once the system is mechanically triggered, it bursts into well‐defined nanosized core–satellite supraparticles. Scale‐up is easily feasible and several hundred grams per batch can be demonstrated. The product is a ready‐to‐use and flexibly processible powder. Upon simple mixing with a polymer, it disintegrates into the preprogramed core–satellite supraparticles, thus forming a highly sophisticated nanocomposite with the polymer matrix. A pure silica nanoparticle system and a silica–iron oxide nanoparticle hybrid system are presented to demonstrate the versatility of the approach. Enhanced mechanical and unexpected magneto‐optical properties with the particle system are found. The disintegration of the microparticles into individual core–satellite colloidal supraparticles is confirmed via in situ liquid cell transmission electron microscopy.  相似文献   

5.
Simultaneously acquired microanalytical X‐ray and electron energy loss signals are obtained from a bimetallic core–shell nanoparticle system (FePt@Fe3O4). The signals are decomposed using independent component analysis and the extracted components are used to separately quantify the composition of the spatially overlapping core and shell phases in the nanoheterostructure. The utilization of the complementary strengths of energy dispersive X‐ray and electron energy‐loss spectroscopy microanalysis has enabled the quantification of both light and heavy elements in a single spectrum image acquisition.  相似文献   

6.
7.
8.
9.
Due to their high spatial resolution and precise application of force, optical traps are widely used to study the mechanics of biomolecules and biopolymers at the single‐molecule level. Recently, core–shell particles with optical properties that enhance their trapping ability represent promising candidates for high‐force experiments. To fully harness their properties, methods for functionalizing these particles with biocompatible handles are required. Here, a straightforward synthesis is provided for producing functional titania core–shell microparticles with proteins and nucleic acids by adding a silane–thiol chemical group to the shell surface. These particles display higher trap stiffness compared to conventional plastic beads featured in optical tweezers experiments. These core–shell microparticles are also utilized in biophysical assays such as amyloid fiber pulling and actin rupturing to demonstrate their high‐force applications. It is anticipated that the functionalized core–shells can be used to probe the mechanics of stable proteins structures that are inaccessible using current trapping techniques.  相似文献   

10.
Development of advanced theranostics for personalized medicine is of great interest. Herein, a multifunctional mesoporous silica‐based drug delivery carrier has been developed for efficient chemo/photothermal therapy. The unique Au nanoframes@mSiO2 spheres are elaborately prepared by utilizing Ag@mSiO2 yolk–shell spheres as the template through spatially confined galvanic replacement method. Compared with the Ag@mSiO2 yolk–shell spheres, the resultant Au nanoframes@mSiO2 spheres show a strong and broad near‐infrared (NIR) absorbance in the 550–1100 nm region, high surface areas, and good biocompatibility. When irradiated with a NIR laser with a power intensity of 1 W cm?2 at 808 nm, they can become highly localized heat sources through the photothermal effect. Moreover, the photothermal effect of the Au nanoframes can significantly promote the fast release of doxorubicin. The in vitro studies show obvious synergistic effects combining photothermal therapy and chemotherapy in the Au nanoframes@mSiO2 spheres against Hela cells. It is believed that the as‐obtained multifunctional vehicles provide a promising platform for the combination of hyperthermia and chemotherapy for cancer treatment application.  相似文献   

11.
Improving nanomaterial imaging contrast is critical for disease diagnosis and treatment monitoring. Designing activatable imaging agents has the extra benefit of improving signal‐to‐background ratios, as well as reporting local environmental cues. MnO2, sensitive to local pH and redox state, is used to modulate the tumor microenvironment and can serve as a potential activatable magnetic resonance imaging (MRI) agent. However, the intrinsic 2D form may limit their applications in nanomedicine. Here, a novel facile aqueous route to synthesize MnO2 nanoshells on various core nanomaterials, regardless of their chemical nature and morphology, is reported. Cationic polyelectrolyte is discovered to be the key to obtain a universal method of coatingMnO2 on nanomaterials. Taking Cu2−xSe@MnO2 as an example, a remarkable three times enhanced T1‐MRI contrast in a tumor reducing environment is demonstrated. Combined with large optical absorbance of inner Cu2−xSe cores, they can be applied for efficient redox‐activated MRI‐guided photothermal therapy in the NIR‐II window in vitro and in vivo.  相似文献   

12.
The tendency to the miniaturization of devices and the peculiar properties of the nanoparticles have raised the interest of the scientific community in nanoscience. In particular, those systems consisting of nanoparticles dispersed in fluids, known as nanofluids, have made it possible to overcome many technological and scientific challenges, as they show extraordinary properties. In this work, the loss of the spectral stability in heterogeneous luminescent nanofluids is studied revealing the critical role played by the exchange of ions between different nanoparticles. Such ion exchange is favored by changes in the molecular properties of the solvent, making heterogeneous luminescent nanofluids highly unstable against temperature changes. This work demonstrates how both temporal and thermal stabilities of heterogeneous luminescent nanofluids can be substantially improved by core–shell engineering. This simultaneously avoids the leakage of luminescent ions and the effects of the solvent molecular changes.  相似文献   

13.
14.
Controlling the electronic structure of a catalyst has become an important approach to tune and optimize its antipoisoning ability and catalytic efficiency for a chemical reaction. Using d ‐mannitol as a structure‐directing agent to induce size transformation and twinned defects in copper particles, penta‐twinned Cu elongated pentagonal bipyramids as supports have been synthesized, and HAuCl4 is reduced in situ to form an AuCu alloy on the surface of Cu, generating a self‐supporting AuCu@Cu core–shell structure for application as a glucose sensor in a neutral medium. The AuCu@Cu elongated pentagonal bipyramids with 0.42 at% Au show activities comparable with the Au and Pt catalyst but are more tolerant toward Cl? than Au and more tolerant toward H3–xPO4x? than Cu. The mass activity of AuCu@Cu reaches 0.10 A mg?1 of Au at 0.6 V versus Ag/AgCl (3 m KCl) in a pH 8.0 buffer. The self‐supporting AuCu@Cu elongated pentagonal bipyramids are promising catalysts for glucose sensing in a neutral medium. This work offers an effective way to design antitoxic and durable catalysts with ultralow content of noble metal for glucose sensing.  相似文献   

15.
The challenges of nanoparticles, such as size‐dependent toxicity, nonbiocompatibility, or inability to undergo functionalization for drug conjugation, limit their biomedical application in more than one domain. Oval‐shaped iron@gold core–shell (oFe@Au) magnetic nanoparticles are engineered and their applications in magnetic resonance imaging (MRI), optical coherence tomography (OCT), and controlled drug release, are explored via photo stimulation‐generated hyperthermia. The oFe@Au nanoparticles have a size of 42.57 ± 5.99 nm and consist of 10.76 and 89.24 atomic % of Fe and Au, respectively. Upon photo‐stimulation for 10 and 15 minutes, the levels of cancer cell death induced by methotrexate‐conjugated oFe@Au nanoparticles are sixfold and fourfold higher, respectively, than oFe@Au nanoparticles alone. MRI and OCT confirm the application of these nanoparticles as a contrast agent. Finally, results of in vivo experiments reveal that the temperature is elevated by 13.2 °C, when oFe@Au nanoparticles are irradiated with a 167 mW cm?2 808 nm laser, which results in a significant reduction in tumor volume and scab formation after 7 days, followed by complete disappearance after 14 days. The ability of these nanoparticles to generate heat upon photo‐stimulation also opens new doors for studying hyperthermia‐mediated controlled drug release for cancer therapy. Applications include biomedical engineering, cancer therapy, and theranostics fields.  相似文献   

16.
17.
Nanoparticle‐based electrodes often suffer from poor electrical properties due to high interparticle resistance, as well as low Coulombic efficiency attributed to large surface area induced parasitic reactions. In order to address this issue, a strategy of encapsulating two kinds of nanoparticles of both metal oxide and metallic nanoparticles is attempted, simultaneously, in microscale carbon cubic shells for highly reversible lithium storage. The unique structure is synthesized by simultaneous reactions of (1) decomposition of crystalline Co2(OH)3Cl microparticle precursor, synthesized in unique eggshell reactor systems, into nanoparticles, (2) partial reduction of CoO into metallic Co by eggshell membrane, (3) carbon coating by chemical vapor deposition facilitated by presence of catalytic Co with carbon released from the eggshell membrane, and (4) microscale carbon shell formed using the Co2(OH)3Cl particles as microtemplates. The carbon shells can prevent the encapsulated mixed nanoparticles from direct contact with electrolyte and reduce undesirable parasitic reactions, and accommodate volumetric variation during cycling. The introduction of metallic Co nanoparticles can reduce interparticle resistance. When evaluated for lithium storage, the unique structures of CoO–Co@C demonstrate superior electrochemical performances in terms of electrode stability and rate performance, as compared to that of pure CoO.  相似文献   

18.
This paper presents, for the first time, noninvasive imaging of a livingplant using biocompatible carbon‐encapsulated Au Ag nanoparticles (NPs) using micro‐Raman spectroscopy (MRS). A convenient and controllable hydrothermal synthetic route was developed to synthesize the layer‐by‐layer triplex Au Ag C core–shell NPs, which can incorporate the reporter molecule 4‐mercapto benzoic acid (4‐MBA). A unique approach was devised to deliver the carbon‐encapsulated surface‐enhanced Raman scattering (SERS) tags into the leaf of Nicotiana benthamiana. In vivo SERS mapping was subsequently performed to monitor the distribution of tags inside the leaf, which successfully avoided interference of autofluorescence from plant tissue. The imaging modality reported here and further the bio‐functionalized carbon‐encapsulated SERS NPshold significant potential as a strategy forbiochemical imaging in living plantsin a noninvasive and nontoxic manner, whichmight open up exciting opportunities for plant sciences. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Spinel ferrites hold great promise as attractive electrode materials for high‐performance supercapacitors owing to their multiple valence states and abundant choice of metal cation. However, the main bottleneck for most of the currently reported spinel ferrite‐based electrodes is relatively low specific capacitance. Herein, a new kind of lithium ferrites (Li0.5Fe2.5O4, LFO)@polydopamine (PDA) (denoted as LFO@PDA) core–shell nanoparticles with extraordinary capacitive performance as negative electrodes for aqueous asymmetric supercapacitors (ASCs) are reported first. Taking advantage of increased active sites, improved conductivity, enhanced hydrophilicity, and good strain accommodation in terms of the interesting core–shell architecture and PDA shell, the as‐obtained LFO@PDA electrode reaches a remarkable capacitance of 276.4 F g−1 and prominent durability (no any capacitance loss after 15 000 cycles). Moreover, a robust aqueous 1.8 V‐ASC device with a preferable energy density of 33.9 Wh kg−1 is also achieved based on the LFO@PDA electrode as negative electrode.  相似文献   

20.
Conversion of CO2 gas to CO fuels is one of the most promising solutions for the increasing threat of global warming and energy crisis. The efficient catalyst Ni–Au dumbbell converting CO2 into CO at elevated temperatures has high CO product selectivity; however, the accompanied atomic diffusion and subsequent surface reconstruction affect the catalytic efficiency of chemical reaction. Atomic scale characterization of structural evolution of the catalyst, which is essential to correlate the functional mechanism to active catalyst surfaces, is yet to be studied. Here, in situ transmission electron microscopy experiments and atomistic simulations are performed to characterize the structural evolution of Ni–Au dumbbell nanoparticles under two different external stimuli. In the condition of high temperature and vacuum, the Ni–Au nanostructure reveals a clear shape reconstruction from the initial dumbbell to core–shell‐like, which is induced by capillary force to minimize free surface energy of the system. The shape transformation involves two stages of processes, initial fast Au diffusion followed by slow source‐controlled diffusion. At ambient temperature, the combination of CO2 and electron flux surprisingly induces analogous structural transformation of Ni–Au nanostructure, where the associated chemical reaction and CO absorption stimulate the Au migration on Ni surface. Such surface reconstruction can be widely present in catalytic reactions in different environmental conditions, and the results herein demonstrate the detailed processes of Ni–Au structure evolution, which provide important insights for understanding the catalyst performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号