首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Strelow FW 《Talanta》1991,38(8):923-928
Traces and larger amounts of bismuth (up to 50 mg) can be separated from gram amounts of thallium, mercury, gold and platinum (up to 5 g) by sorption from a mixture of 0.1M hydrochloric acid and 0.4M nitric acid on a column containing just 3 g (8.1 ml) of AGMP-50, a macroporous cation-exchange resin. This resin retains bismuth much more strongly than does the usual microporous resin (styrene-DVB with 8% cross-linkage). Other elements are eluted with the same acid mixture as that used for sorption, and bismuth is finally eluted with 1.0M hydrochloric acid. Separations of bismuth are sharp and recoveries quantitative. Only microgram amounts of the other elements remain in the bismuth fraction. Amounts of bismuth as little as 5 mug have been separated from 5 g of thallium, and determined (r.s.d. = 2%) by flame atomic-absorption. Only 100-mug amounts of bismuth have been separated from gram amounts of mercury, gold, and platinum, but there is no reason to believe that smaller or larger amounts of bismuth cannot be separated from these elements and recovered with the same accuracy as that for the separation from thallium. The lower limit of the method is determination of 0.4 mug of bismuth in 10 ml of solution (0.004 absorbance). An elution curve, the relevant distribution coefficients and the results of analysis of synthetic mixtures and two practical samples [thallium metal and mercury(II) nitrate] are presented.  相似文献   

2.
Traces of lead and minor amounts up to 20 mg, can be separated from gram amounts of thallium by cation-exchange chromatography on a column containing only 2 g of AG50W-X4 resin. Thallium passes through the column in 0.1 M HCl in 40% acetone. The retained lead can be eluted with 3 M HCl or HNO3. Other elements, including Cd, Zn, In, Ga, Cu(II), Fe(III). Mn(II), Co(II). Ni(II), U(VI) and Al, are retained quantitatively with lead. Only Hg(II), Au(III), the platinum metals, bismuth and elements forming oxyanions accompanying thallium. Results for the determination of trace elements in 99.999% pure thallium are presented.  相似文献   

3.
Traces of Mn(II), Co(II), and Ni(II) and minor amounts (up to 20 mg of these elements are separated from gram amounts of tellurium by cation-exchange chromatography on small columns (3 g) of macroporous AG MP-50 resin or larger colunns (5 g) of microporous AG 50W-X8 resin. The trace elements are retained from 0.5 M HCl containing 70% acetone while tellurium passes through and is eluted completely with this solution. The trace elements are then eluted with 3.0 M HCl and can be determined by atomic absorption spectrometry. Copper (II) can also be separated but requires a 10-g column of AG MP-50 resin. Separations are sharp and quantitative and only microgram amounts of tellurium remain in the trace element fraction when a 3-g sample of tellurium dioxide is taken; 10-μg amounts of the trace elements were separated from such samples and determined with standard deviations of <1%. Relevant elution curves and results for the analysis of synthetic mixtures are presented.  相似文献   

4.
The separation of cadmium from indium, zinc and many other elements is considerably improved by eluting these elements with 0.1 M hydrobromic–0.5 M nitric acid solution from a column of AG1-X8 resin. Cadmium is retained very strongly and can be eluted with 2 M nitric acid or 1 M ammonia–0.2 M ammonium nitrate solution. Separations are sharp and quantitative and from microgram amounts up to 2 g of indium and zinc are separated from amounts of cadmium ranging from micrograms up to 100 mg on a 2-g (4.6 ml) resin column. Ga(II), Fe(III). Mn(II), Co(II), U(VI) and Ni(II) can be separated quantitatively from cadmium in the same way. The behaviour of numerous elements is discussed, with special attention to lead, and relevant elution curves and results from the analysis of synthetic mixtures are presented.  相似文献   

5.
Strelow FW 《Talanta》1985,32(10):953-956
Traces of silver and amounts up to 50 mg can be separated from up to gram amounts of Zn, Cu(II), Ni, Co(II), Mg, Be, Ti(IV), V(IV), Li and Na by eluting these with 2.0M nitric acid from a column containing 54 ml (20 g) of macroporous AG MP-50 cation-exchange resin of 100-200 mesh particle size, in the H(+)-form. Silver is retained and can be eluted with 0.5M hydrobromic acid in 9:1 v v acetone-water. Separations are sharp and quantitative and only a few microg of the other elements are found in the silver fraction. Cadmium and manganese (II) can also be separated quantitatively but show tailing and require larger elution volumes. Some typical elution curves and results of analyses of synthetic mixtures are presented.  相似文献   

6.
Strelow FW 《Talanta》1980,27(3):231-236
Gallium can be separated from Zn, Cu(II), In, Cd, Pb(II), Bi(III), Au(III), Pt(IV), Pd(II), Tl(III), Sn(IV) and Fe(III) by elution of these elements with 0.50M hydrobromic acid in 80% acetone medium, from a column of AG50W-X4 cation-exchange resin. Gallium is retained and can be eluted with 3M hydrochloric acid. Separations are sharp and quantitative except for iron(III) which shows extensive tailing. With 0.20M hydrobromic acid in 80% acetone as eluting agent, all the species above except iron(III) and copper(II) can be separated from gallium with very large separation factors. Only a 1-g resin column and small elution volumes are required to separate trace amounts and up to 0.5 mmole of gallium from more than 1 g of zinc or the other elements. Hg(II), Rh(III), Ir(IV), Se(IV), Ge(IV), As(III) and Sb(III) have not been investigated, but should be separated together with zinc according to their known distribution coefficients. Relevant elution curves, results for the analysis of synthetic mixtures and for amounts of some elements remaining in the gallium fraction are presented.  相似文献   

7.
Victor AH  Strelow FW 《Talanta》1981,28(4):207-214
Zinc and lead can be separated from Cd, Bi(III), In and V(V) by eluting these elements with 0.2M hydrochloric acid in 60% acetone from a column of AG50W-X8 cation-exchange resin, zinc and lead being retained. Mercury(II), Tl(III), As(III), Au(III), Sn(IV), Mo(VI), W(VI) and the platinum metals have not been investigated quantitatively, but from their distribution coefficients, should also be eluted. Vanadium(V), Mo(VI) and W(VI) require the presence of hydrogen peroxide. Zinc and lead can be eluted with 0.5M hydrochloric acid in 60% acetone or 0.5M hydrobromic acid in 65% acetone and determined by AAS; the alkali and alkaline-earth metal ions, Mn(II), Co, Ni, Cu(II), Fe(III), Al, Ga, Cr(III), Ti(IV), Zr, Hf, Th, Sc, Y, La and the lanthanides are retained on the column, except for a small fraction of copper eluted with zinc and lead. Separations are sharp and quantitative. The method has successfully been applied to determination of zinc and lead in three silicate rocks and a sediment.  相似文献   

8.
Strelow FW 《Talanta》1980,27(9):727-732
Iron(III) can be separated from copper(II) and many other elements by eluting these from a column of AG1-X4 anion-exchange resin with 8M hydrochloric acid, while iron(III) is retained and can be eluted with 0.1M hydrochloric acid. The separation is much better than the customary one with 3.5M hydrochloric acid. Columns containing only 8.8 ml (3 g) of resin can separate traces or up to more than 1 mmole of iron(III) from more than 1 g of copper. Mn(II), Ni, Al, Mg and Ca are quantitatively eluted together with copper(II). Lead, the alkali metals, Be, Sr, Ba, Ra, Sc, Y and the lanthanides, Ti(IV), Zr, Hf, Th and Cr(III) have not been investigated in detail but should be separated according to their known distribution coefficients. Separations are sharp and quantitative, less than 1 mug of copper remaining in the iron fraction when more than 1 g was present originally. Relevant elution curves and results of the quantitative analysis of synthetic mixtures are presented.  相似文献   

9.
Gold(III) can be separated from Cd, In. Zn, Ni, Cu(II), Mn(II), Co(II), Mg, Ca, Al, Fe(III), Ga and U(VI) by adsorbing these elements on a column of AG50W-X8 sulphonated polystyrene cation-exchange resin from 0.1M HCl containing 60% v v acetone, while Au(III) passes through and can be eluted with the same reagent. Separations are sharp and quantitative. The amounts of gold retained by the resin are between 1 and 2 orders of magnitude lower than encountered during adsorption from aqueous 0.1M HCl. Recoveries for mg amounts of gold are 99.9% or better and for ng amounts are still better than 99%, as shown by radioactive tracer methods. Hg(II), Bi, Sn(IV), the platinum metals and some elements which tend to form oxy-anions in dilute acid accompany gold. All other elements, though not investigated in detail, should be retained, according to their known distribution coefficients. Relevant elution curves, results of quantitative separations of binary mixtures and of recovery tests are presented.  相似文献   

10.
The ligand, 8-hydroxyquinoline-5-sulfonic acid, forms anionic complexes with cobalt(II), zinc(II), cadmium(II), and lead(II), each resulting complex showing a high affinity for anion-exchange resins. The effect of pH, ligand/metal ratio, volume, and concentration on percent retention of the anionic complexes by an anion-exchange resin are reported. At optimum conditions, all four metals are quantitatively retained by the column. Zinc, cadmium and lead(II) ions are completely eluted with 11 ml or less of 2 M HN03; cobalt(II) is totally removed by 12 M HCl and 2 M HNO3. Concentration enhancements of 100-fold are easily achieved. All four anionic complexes can be left on the column for 7 days and still be quantitatively (99%) recovered. A ligand-loaded resin column can also remove all four metals quantitatively. Distribution coefficients for the metal complexes and their ligand/metal ratios were determined by using batch methods that may also serve as the isolation procedure.  相似文献   

11.
Meintjies E  Strelow FW  Victor AH 《Talanta》1987,34(4):401-405
Traces and small amounts of bismuth can be separated from gram amounts of thallium and silver by successively eluting these elements with 0.3M and 0.6M nitric acid from a column containing 13 ml (3 g) of AG50W-X4, a cation-exchanger (100-200 mesh particle size) with low cross-linking. Bismuth is retained and can be eluted with 0.2M hydrobromic acid containing 20% v/v acetone, leaving many other trace elements absorbed. Elution of thallium is quite sharp, but silver shows a small amount of tailing (less than 1 gmg/ml silver in the eluate) when gram amounts are present, between 20 and 80 mug of silver appearing in the bismuth fraction. Relevant elution curves and results for the analysis of synthetic mixtures containing between 50 mug and 10 mg of bismuth and up to more than 1 g of thallium and silver are presented, as well as results for bismuth in a sample of thallium metal and in Merck thallium(I) carbonate. As little as 0.01 ppm of bismuth can be determined when the separation is combined with electrothermal atomic-absorption spectrometry.  相似文献   

12.
A chelating polystyrene/divinylbenzene-based resin with picolinic acid amide as the functional group was synthesised and characterised by its water regain capacity (0.31 g g?1), stability towards sulphuric acid and alkali, and metal ion-exchange capacities. Mercury(II) is absorbed maximally at about pH 5.4 and can be eluted with 2 M sulphuric acid with 96% efficiency. It can thus be separated from Na(I), K(I), Ca(Il), Mg(Il), Co(Il), Cd(Il), Ni(II), Zn(II), Cr (III) and Fe (III). The method is applied to determination of mercury (II) in synthetic mixtures and in river water.  相似文献   

13.
A method is presented for improved separation of 109Cd from silver cyclotron targets. After dissolution of the target material in nitric acid and removal of silver by precipitation with copper metal, at pH 5, the cadmium is separated from zinc, copper and other elements by anion exchange chromatography. The solution in 0.5 M nitric acid plus 0.1 M hydrobromic acid is percolated through a column containing 4 ml of AG1-X8 anion-exchange resin (100–200 mesh), equilibrated with the same acid mixture. Zinc, copper(II) and other elements are eluted with 50 ml of this mixture. Cadmium is retained and finally eluted with 50 ml of 3 M nitric acid. The cadmium is retained much more strongly from the hydrobromic acid mixture than from the 0.02 M hydrochloric acid used for such separations previously; the presence of the strongly absorbed nitrate anion in fairly high concentration completely eliminates the tailing of zinc observed in 0.02 M hydrochloric acid. A typical elution curve and results of quantitative separations are presented.  相似文献   

14.
The lanthanides plus yttrium and scandium are separated from Ba, Sr, Ca, Mg, Pb(II), Bi(III), Zn, Mn(II) and U(VI) by eluting these elements with 2.0 M nitric acid from a column of AG50W-X8 cation exchange resin (200-400 mesh). The lanthanides are retained and can then be eluted with 4 M nitric or hydrochloric acid. Separations are quantitative and applicable to microgram and millimolar amounts of the lanthanides and the other elements. Elements such as Cu(II), Co(II), Ni(II), Cd. Hg(II), T1(I). Ag, Be, Ti(IV) and the alkali metals should accompany barium quantitatively according to their known distribution coefficients. Relevant elution curves and results of analysis of synthetic mixtures are presented.  相似文献   

15.
Strelow FW  van der Walt TN 《Talanta》1987,34(10):895-897
Traces and minor amounts of indium, gallium and aluminium can be separated from gram amounts of thallium and from each other by cation-exchange chromatography on a column containing as little as 2 g of AG50W-X4, a cation-exchange resin with low cross-linking. An elution sequence of 0.1 M HBr in 40% acetone [for Tl(III)], 0.2M HBr in 80% acetone for In, 0.3M HCl in 90% acetone for Ga and 3M aqueous HCl for Al is used. The separations are very sharp and even 10-mug amounts of In, Ga and Al in synthetic mixtures are recovered quantitatively, with a standard deviation of 0.3 mug. The separation factors between neighbouring ions are extremely large (> 5000).  相似文献   

16.
Korkisch J  Gross H 《Talanta》1974,21(10):1025-1034
A method is described for the determination by atomic-absorption spectrophotometry of lead, tip to the milligram level, in samples of geological materials. After attack with perchloric-hydrofluoric acid mixture and the removal of perchlorate ion by precipitation as potassium perchlorate, lead is separated from matrix elements by means of anion-exchange in 2M hydrobromic acid on the strongly basic anion-exchange resin Dowex 1 x 8. Lead is adsorbed on the resin column while practically all other accompanying elements pass into the effluent. For the elution of lead 6(M) hydrochloric acid is used and after evaporation of the eluate lead is determined by atomic-absorption spectrophotometry. The method was tested by analysing numerous samples with contents ranging from a few ppm to milligram amounts of lead. In most cases very good agreement of results was obtained.  相似文献   

17.
An atomic absorption spectrophotometric method is described for the determination of microgram quantities of zinc in canned juices. After sample digestion in concentrated nitric acid, the solution is evaporated till near dryness, and then a solution of 2 M HCl is added to form tetrachlorozincate (II) ion. This acid solution, containing the zinc complex is passed through an ion-exchange column (anion exchange resin, chloride form, which is preconditioned by passing 1 M HCl solution). Zinc is eluted from the column with 0.01 M HCl solution. After evaporation to dryness, the residue is dissolved in 1% (v/v) HNO3, and then atomized into an air-acetylene flame. The limit of detection of the method is 0.15 micrograms ml-1 Zn. The analytical aspects of the proposed method, including the standard addition technique are discussed.  相似文献   

18.
Mendez R  Pillai VN 《Talanta》1990,37(6):591-594
A chelating ion-exchange resin with hydroxamic acid functional groups was synthesized from styrene-maleic acid co-polymer cross-linked with divinylbenzene. A resin prepared from equimolar amounts of styrene and maleic anhydride with 0.75 mole% divinylbenzene gives the best sorption characteristics. The selectivity of the resin for metal ions is copper(II) > cobalt(II) > zinc(II) > nickel(II) > manganese(II) > chromium(III) > iron(III) > vanadium(V). Copper(II), chromium(III) and iron(III) in chromium plating baths can be separated by use of the resin and determined spectrophotometrically.  相似文献   

19.
A simple and fast method for preconcentration and determination of ultra trace amounts of lead(II), mercury(II) and cadmium(II) in water samples is presented. Lead, mercury and cadmium adsorbed quantitatively during passage of water samples (pH?=?7, flow rate?=?20 mL min?1) through octadecyl silica membrane disks modified with 5,5′-dithiobis(2-nitrobenzoic acid). The retained lead, mercury and cadmium are then stripped from the disk with a minimal amount of 1 M hydrochloric acid solution as eluent, and determined by atomic absorption spectrometry. The influence of flow rates of the eluent and sample solution, the amount of ligand, type and least amount of eluent, pH of sample, effect of other ions and breakthrough volume are determined. The breakthrough volume of the method is greater than 2000 mL for lead and greater than 1500 mL for mercury and cadmium, which results in an enrichment factor of 200 for lead and an enrichment factor of 150 for both mercury and cadmium. The limit of detection of the proposed method is 177, 2 and 13 ng l?1 for lead, mercury and cadmium, respectively.  相似文献   

20.
Strelow FW  Boshoff MD 《Talanta》1971,18(9):983-986
Mn(IT) can be eluted quantitatively with 0.067M ammonium citrate at pH 7.0 or 7.5 from a column of AG50W-X8 cationexchange resin (200-400 mesh), and separated from Sr which is retained. Mg, Ca, Cu(II), Zn and Co(II) accompany Mn(II). From citric acid solutions up to 1M (20%) and from 5 % citric acid solution at pH 2.2 both Mn(II) and Sr are retained very strongly. This is in agreement with some previous work but disagrees with a recent statement by others that 5 % citric acid at pH 2.2 is an effective eluting agent for Sr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号