首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The simultaneous determination of iron(III) and titanium(IV) with diantipyrinylmethane (DAPM) based on dual-wavelength spectrophotometry is described. The absorbances at 388 nm, 470, and 514.9 (A388, A470, A514.9, respectively) are measured and a ratio k (= A388/A514.9) of 3.64 is introduced to allow simultaneous determinations of iron and titanium. The apparent molar absorptivities obtained by using the differences in absorbance, A388—A514.9, for titanium and A470 × k — A388 for iron, are 1.41 × 104 and 1.13 × 104 1 mol?1 cm?1, respectively. The calibration graphs are linear up to 20 mg 1?1 iron(III) oxide and 5 mg 1?1 titanium(IV) oxide. The proposed method was applied successfully to the determination of iron and titanium in silicate rocks. The protonation equilibria of DAPM were also studied; Ka1 and Ka2 are estimated as 101.10 and 100.75, respectively.  相似文献   

2.
《Analytical letters》2012,45(13-14):2813-2834
Abstract

Spectrophotometric procedure is described for the quantitative determination of diphenadione [2-(diphenylacetyl)-1,3-indandione], based on direct spectrophotometric measurements of the absorbances of its iron (III), iron (II) and cobalt (II), metal complexes at 488 nm, 505 nm and (334 nm, 372 nm), respectively. The drug reacts with metals in the ratio of 3:1 and 2:1 for iron (III) and for both iron (II) and cobalt (II) respectively. The obtained complexes have apparent molar absorptivities of 1.48 × 103 1 mol?1 cm?1, 0.714 × 103 1 mol?1cm?1 and (1.70 × 103 1 mol?1cm?1, 1.93 × 103 1 mol?1cm?1) for iron (III), iron (II) and cobalt (II) complexes, respectively. The procedure is suggested for the determination of 51–400 μg.ml?1 diphenadione via the iron (II) complex and 35–170 μg.ml?1 diphenadione via both cobalt (II) and iron (III) complexes. The suggested procedure has accuracies of 99.79 ± 0.67%, 99.64 ± 0.37% and (100.09 ± 0.53%, 99.99 ± 0.42%) for the metal complexes of iron (III), iron (II) and cobalt (II), respectively.  相似文献   

3.
《Analytical letters》2012,45(8):1413-1427
Abstract

A flow-injection configuration for the spectrophotometric determination of oxalate, citrate and tartrate is proposed. The procedure is based on the photochemical decomposition of the complexes formed between iron(III) and these anions. The iron(II) produced in the photochemical reactions was detected by measuring the absorbance after complexation with ferrozine (λmax=562 nm). Linear calibration graphs were obtained over the concentration ranges 5.0 × 10?6 - 1.0 × 10?4 M, 8 × 10?6 - 1.8 × 10?4 M and 1.0 × 10?6 - 2 × 10?5 M for oxalate, citrate and tartrate, respectively. The relative standard deviations at the 1x10?5 M concentration level were within the range 1.29 - 1.47 %. The sampling frequency was about 40 samples h?1. The usefulness of the method was tested in the determination of oxalate in urine and spinach, of citrate in pharmaceuticals and soft drinks and of tartrate in pharmaceuticals. For the determination of oxalate in urine samples a prior separation of the analyte by precipitation with calcium chloride is recommended.  相似文献   

4.
Iron(II) (1.0 × 10?9–1.0 × 10?6 M) is determined by the production of chemiluminescence in a luminol system in the absence of added oxidant. Iron(III) (2.0 × 10.8?8–2.0 × 10?6 M) is determined after reduction to iron(II) in a silver reductor mini-column in the flow system. Cobalt, chromium, copper and manganese interfere.  相似文献   

5.
Starting from 2‐furylfulvene (1a) , 2‐thiophenylfulvene (1b) , and 1‐methyl‐2‐pyrrolylfulvene (1c), [1,2‐di(cyclopentadienyl)‐1,2‐di‐(2‐furyl)ethanediyl] titanium dichloride (2a) , [1,2‐di(cyclopentadienyl)‐1,2‐di‐(2‐thiophenyl)ethanediyl] titanium dichloride (2b) , and [1,2‐di(cyclopentadienyl)‐1,2‐bis‐(1‐methyl‐2‐pyrrolyl)ethanediyl] titanium dichloride (2c) were synthesized. When titanocenes (2a–c) were tested against pig kidney carcinoma cells (LLC‐PK), inhibitory concentrations (50%) of 4.5 × 10?4 M , 2.9 × 10?4 M and 2.0 × 10?4 M respectively were observed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Acid chrome blue K (ACBK) was electropolymerized on the surface of a glassy carbon electrode (GCE) by cyclic voltammetric sweep in the potential range from –0.2 to 0.9 V. The characteristic of poly‐ACBK film was studied by different methods such as electrochemical impedance spectroscopy (EIS) and cyclic voltammetry. This modified electrode showed excellent electrocatalytic response to curcumin with the increase of the electrochemical responses. Under the optimal conditions a good linear voltammetric response could be obtained over the range of 1.0 × 10?7‐7.0 × 10?5 M and the detection limit was got as 4.1 × 10?8 M (S/N = 3). The method was successfully applied for the determination of curcumin in human urinev samples.  相似文献   

7.
In this work, a simple and fast procedure for elimination of interfering surface active substances and for U(VI) adsorptive stripping voltammetric determination was developed. The adsorption in the form of U(VI)-cupferron complexes was performed, because as it was proved before, U(VI) forms with cupferron stable complexes, which were employed in voltammetric procedures. The procedure is based on two steps: the first is an adsorption of surface active substances onto an Amberlite XAD-16 or XAD-7 resin and the second is a voltammetric determination of U(VI) with a pulsed potential of accumulation alternate –0.65–0.3 V with the frequency of 0.5 Hz and then the differential pulse voltammogram was recorded, whereas the potential was scanned from –0.65 to –1.2 V. The detection limit estimated from three times the standard deviation for a low U(VI) concentrations was equal to 1.7 × 10?10 mol L?1 (7.2 × 10?8 g L?1). The linear range of U(VI) was observed over the concentration range from 5.0 × 10?10 mol L?1 (2.1 × 10?7 g L?1) to 2.0 × 10?8 mol L?1 (8.5 × 10?6 g L?1) for an accumulation time of 60 s. The influence of different kinds of surfactants, such as non-ionic, cationic and anionic on the uranium voltammetric signal was studied. The results confirm the possibility of U(VI) determination in water samples containing high concentrations of surface active substances even up to 50 mg L?1.  相似文献   

8.
《Analytical letters》2012,45(10):1667-1678
Abstract

A new spectrophotoraetric method has been developed for the analysis of pheniramine maleate and chlorphenlramine maleste, based on their reaction with iron (III). Pheniramine maleate and ch lor pheniramine maleate were found to form a 2:1 complex with iron (III) with an average log. stability constant of 12.26 and 12.36, respectively. The iron (III) complexes of both drugs showed maximum absorption at 273 nm, at pH 5, with slopes equal to 0.710 and 0.898 for pheniramine maleate complex and chlorpheniramine maleate complex, respectively. The proposed method was used for the determination of pheniramine maleate and chlorpheniramine maleate in quantities ranging between 0.25 × 10?4 M to 2.5 × 10?4 M with mean percentage recoveries of 100.17 ± 1.09% and 100.00 ± 1.13% for both drugs, respectively. The results obtained were compared with that of the B.P. (1980) method.  相似文献   

9.
Glassy carbon electrodes are modified by coating with dicyclohexyl-18-crown-6 in Nafion-117. The electrode is used for a very sensitive anodic stripping voltammetric determination of silver. High sensitivity is obtained owing to the release of crown molecules from the silver-crown complex during the deposition. The detection limit is 2×10?12 M after electrodeposition for 30 min. The recommended supporting electrolyte is 4×10?3–7×10?3 M potassium chloride in 0.01 M nitric acid with a deposition potential of ?0.30 V vs. SCE and a linear potential scan. Three typical calibration graphs were linear over the range 2×10?11–1×10?8 M for deposition times of 30, 20 and 8 min, respectively. The silver content of reagent-grade ammonium nitrate was found to be 0.48×10?4% with a relative standard deviation of 3.7% (n=7) for parallel determinations.  相似文献   

10.
An electroanalytical method, based on derivative chronopotentiometry of the iron complex with 2-(5′-bromo-2′- pyridylazo)-5-diethylaminophenol (5-Br-PADAP) accumulated adsorptively on the surface of a hanging mercury drop electrode, for determining trace iron in food has been developed. The dependences of the peak height on the dt/dE vs. E curve on the preconcentration time, preconcentration potential and electrode area are discussed. Optimum experimental conditions include 0.005 mol 1?1 NH3NH4Cl, 2 × 10?7 mol 1?1 5-Br-PADAP and a preconcentration potential of ?0.40 V (vs. SCE). Under these conditions, the detection limit and the linear range are 2 × 10?9 and 6.7 × 10?9?1.7 × 10?7 mol 1?1, respectively. The relative standard error of the method is 1.5% for 6.7 × 10?8 mol 1?1 Fe(III). The method was applied to samples of microwave digested food.  相似文献   

11.
The mechanism by which an excess of iron(II) ion reacts with aqueous chlorine dioxide to produce iron(III) ion and chloride ion has been determined. The reaction proceeds via the formation of chlorite ion, which in turn reacts with additional iron(II) to produce the observed products. The first step of the process, the reduction of chlorine dioxide to chlorite ion, is fast compared to the subsequent reduction of chlorite by iron(II). The overall stoichiometry is The rate is independent of pH over the range from 3.5 to 7.5, but the reaction is assisted by the presence of acetate ion. Thus the rate law is given by At an ionic strength of 2.0 M and at 25°C, ku = (3.9 ± 0.1) × 103 L mol?1 s?1 and kc = (6 ± 1) × 104 L mol?1 s?1. The formation constant for the acetatoiron(II) complex, Kf, at an ionic strength of 2.0 M and 25°C was found to be (4.8 ± 0.8) × 10?2 L mol?1. The activation parameters for the reaction were determined and compared to those for iron(II) ion reacting directly with chlorite ion. At 0.1 M ionic strength, the activation parameters for the two reactions were found to be identical within experimental error. The values of ΔH? and ΔS? are 64 ± 3 kJ mol?1 and + 40 ± 10 J K?1 mol?1 respectively. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 554–565, 2004  相似文献   

12.
A voltammetric study of the oxidation of Ceftazidime (CEFT) has been carried out at the glassy carbon electrode by cyclic, differential pulse (DPV) and square wave (SWV) voltammetry. The oxidation of CEFT was irreversible and exhibited diffusion controlled process depending on pH. The oxidation mechanism was proposed and discussed. According to the linear relationship between the peak current and concentration, DPV and SWV voltammetric methods for CEFT assay in pharmaceutical dosage forms and human urine were developed. For analytical purposes, a well resolved diffusion controlled voltammetric peak was obtained in 0.1 M H2SO4 at 1.00 and 1.02 V for differential pulse and square wave voltammetric techniques, respectively. The linear response was obtained within the range of 4 × 10?6?8 × 10?5 M with a detection limit of 6 × 10?7 M for differential pulse and 4 × 10?6–2 × 10?4 M with a detection limit of 1 × 10?6 M for square wave voltammetric technique. The determination of CEFT in 0.1 M H2SO4 was possible over the 2 × 10?6–1 × 10?4 M range in urine sample for both techniques. The standard addition method was used for the recovery studies.  相似文献   

13.
Two flow-injection methods (continuous-flow and stopped-flow) are proposed for the determination of paraoxon, applying the dual-injection technique and spectrophotometric detection. They are based on the inhibition of the acetylcholinesterase-catalysed hydrolysis of α-naphthyl acetate and subsequent reaction of the α-naphthol produced with p-nitrobenzenediazonium fluoroborate. For the continuous-flow system the calibration graph was linear from 5 × 10?7 to 1.5 × 10?5 M, the relative standard deviation (r.s.d.) (n=6) for an 8 × 10?6 M standard was 1.4%, the limit of detection (3σ) was 4 × 10?7 M and the sample throughput was ca. 60 h?1. For the stopped-flow system the linear range was from 1 × 10?8 to 4 × 10?7 M, the r.s.d. for a 2.5 × 10?7 M standard was 0.9%, the limit of detection was 8 × 10?9 M and the sample throughput was 30 h?1.  相似文献   

14.
Differential pulse cathodic adsorptive stripping (DPCAdSV) and square wave cathodic adsorptive stripping (SWCAdSV) voltammetric methods were developed for the determination of antimony and lead in gunshot residues. Linear working ranges for DPCAdSV and SWCAdSV methods were (2.0×10?9–5.0×10?7) M and (2.0×10?9–7.0×10?7) M for antimony and 2.0×10?9–3.0×10?7 M (both methods) for lead. The detection of antimony limits were found to be 1.3×10?9 M for DPCAdSV and 7.3×10?10 M for SWCAdSV while the corresponding values for lead were 3.0×10?9 M and 5.8×10?10 M. Antimony and lead contents obtained by these methods in gunshot residues are in good agreement with those obtained by graphite furnace atomic absorption spectrometric method within a confidence limit of 95%.  相似文献   

15.
A method is described for determination of ozone in clean aqueous solutions from the extent of oxidation of excess of iron (II); the excess is quantified spectrophotometrically by using 4,7-diphenyl-1,10-phenanthroline disulfonate. With suitable reaction conditions, the ozone concentrations thus determined agree within 1% with those determined by ultraviolet absorption for ozone concentrations near 3×10?4 M and within 5% with those obtained by using the indigo dye bleaching method for ozone concentrations near 3×10?5 M.  相似文献   

16.
A very sensitive and rapid potentiometric determination of trace chlorine in water is described. The method is based on the transient potential changes which appears during the reduction of dissolved chlorin with an iron(III)/iron(II) potential buffer containing chloride and sulfuric acid. The sample is injected into a water carrier stream and merged with a stream of this potential buffer solution; chlorine is reduced during passage through a short reaction coil. The potential change from the baseline is measured with a flow-through ORP (oxidation-reduction potential) electrode. Potential changes (peak heights) are proportional to chlorine concentrations from 10?7 M to 10?5 M. The detection limit is 5 × 10?8 M (3.5 μgl?1 as Cl2). The sample throughput is 45 h?1. Reproducibility is in the range 2.5–1.1%. Results for potable water agree with those obtained by the o-tolidine method.  相似文献   

17.
A highly sensitive method has been developed for the determination of titanium(IV) and iron(III) by ion-pair reversed phase liquid chromatography using sodium 1,2-dihydroxybenzene-3,5-disulfonic acid (Tiron) as a precolumn chelating reagent. The metal - Tiron chelates were separated on a C18 (ODS) column; the mobile phase was a 2:8 (v/v) mixture of acetonitrile and acetate buffer (0.04 mol/L, pH 6.2) containing 2.0 × 10?3 mol/L Tiron, 0.04 mol/L tetrabutylammonium bromide, and 0.1 mol/L potassium nitrate. The detection limits for titanium(IV) and iron(III) are 0.5 and 2.0 μg/L, respectively. The method has been applied to the simultaneous determination of titanium(IV) and iron(III) in river water samples and has furnished highly precise results.  相似文献   

18.
《Analytical letters》2012,45(14):2693-2707
Abstract

In the present work, an adsorptive cathodic stripping voltammetric method using a hanging mercury drop electrode (HMDE) was described in order to determine the ultra trace of lead ions with carbidopa in different real samples. The method is based on accumulation of lead metal ion on mercury electrode using carbidopa as a suitable complexing agent. The potential was scanned to the negative direction and the differential pulse stripping voltammograms were recorded. The instrumental and chemical parameters were optimized. The optimized conditions were obtained in pH of 8.4, carbidopa amount of 1.0×10?6 M, accumulation potential of 0. 0 V, accumulation time of 100 s, scan rate of 100 mV/s and pulse height of 50 mV. The relationship between the peak current versus concentration was linear over the range of 2.4×10?10–4.8×10?7 M. The limits of detection were 5.8×10?11 M and the relative standard deviation at 4.8×10?10, 2.1×10?8, and 2.4×10?7 M of lead ion were obtained 3.2, 2.9, and 2.7%, respectively (n=7).  相似文献   

19.
A reliable and simple electrochemical method has been proposed for the simultaneous determination of paracetamol (PAR) and p‐aminophenol (PAP) in pharmaceutical formulations. The oxidation and reduction peak potentials in cyclic voltammetry (CV) for PAR on carbon ionic liquid electrode (CILE) were occurred at 370 and 225 mV vs. Ag/AgCl, respectively at pH 7.0, while those for PAP on CILE appeared at 128 mV and 68 mV, respectively at the scan rate of 0.05 V s?1. In comparison to the conventional carbon paste electrode, the apparent reversibility and kinetics of the electrochemical reactions of PAR and PAP were significantly improved on CILE. In differential pulse voltammetric technique, the peak potentials for PAR and PAP appeared at 345 and 130 mV, respectively, with the peak separation of 215 mV, sufficient for their simultaneous determination in samples containing these two species. The proposed method was used for simultaneous determination of PAR and PAP in tablets. PAR and PAP can be determined in the ranges of 2.0×10?6–2.2×10?3 M and 3.0×10?7–1.0×10?3 M, with the detection limits of 5.0×10?7 and 1.0×10?7 M (calculated by 3σ), respectively. The relative standard deviations for the determination of PAR and PAP were less than 2%.  相似文献   

20.
At 1.5 V applied between the electrodes on the piezoelectric crystal, many metals electrodeposit on an electrode so that the frequency changes. Iron(III) (1 × 10?5-1 × 10?4 M) can be determined by adsorption of iron(III) phosphate which also causes a frequency change. Electrodeposition can be prevented by covering one electrode with a thin glass plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号