首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some pyridylazo and thiazolylazo compounds were synthesized as spectrophotometric reagents for copper(II). The water-soluble bidentate ligand, 4-(3,5-dibromo-2-pyridylazo)-N-ethyl-N-(3-sulfopropyl)aniline (3,5-diBr-PAESA), provides the greates sensitivity, forming a 1:2 Cu:L in the presence of sodium dodecylsulfate. The molar absorptivity of the complex is 1.24 × 105 l modl?1 cm?1 at 638 nm. Copper(II) (10–200 μg l?1) is easily and quickly (60 h?1) determined in a flow-injection system. Application to the determination of copper(II) in serum is described.  相似文献   

2.
The following organic and organic–inorganic hybrid compounds were prepared as photo-luminescent materials following efficient and practical synthetic methods: 1,3-bis[4-(n-alkoxy)phenyl]-2-propen-1-one (where, n-alkoxy: O(CH2)nH, n = 6,7,8,9 or 10); 3,5-bis[4-(n-alkoxy)phenyl]-1H-pyrazole (where, n-alkoxy: O(CH2)nH, n = 6,7,8,9 or 10) (in case of n = 7, a mixture of 3,5-bis(4-heptyloxyphenyl)-1H-pyrazole and 3,5-bis(4-heptyloxyphenyl)-4H-pyrazole was detected) and bis(3,5-bis [4-(n-alkoxy) phenyl]-1H-pyrazole) silver(I) nitrate (where, n-alkoxy: O(CH2)nH, n = 6,7,8,9 or 10). The prepared compounds have been characterised and their structures were elucidated depending upon (FTIR, UV-Vis, 1HNMR, 13CNMR, 2D 1H-1H-COSY, 2D 1H-13C-HSQC and mass spectra) in addition to molar conductivity measurements for silver(I) complexes. The mesomorphism behaviour of the prepared compounds was studied using polarised light optical microscopy and confirmed with differential scanning calorimetry and X-ray powder diffraction techniques. The studies showed that among all of these compounds only the pyrazole derivatives are liquid crystal materials. The luminescent properties of all the prepared compounds were also investigated which confirmed that all of these compounds are photo-luminescent in the crystalline solid state and in the mesophase.  相似文献   

3.
《Analytical letters》2012,45(7):1158-1172
Abstract

A disposable glucose biosensor is developed by immobilizing glucose oxidase into silver nanoparticles-doped silica sol-gel and polyvinyl alcohol hybrid film on a Prussian blue-modified screen-printed electrode. The silver nanoparticles-enhanced biosensor shows a linear amperometric response to glucose from 1.25 × 10?5 to 2.56 × 10?3 with a sensitivity of 20.09 mA M?1 cm?2, which is almost double that of the biosensors without silver nanoparticles. The immobilized glucose oxidase retained 91% of its original activity after 30 days of storage in phosphate buffer (pH 6.9; 0.1 M) at 4°C. Blood glucose in a rabbit serum sample was successfully measured with the biosensor.  相似文献   

4.
Hung SC  Qu CL  Wu SS 《Talanta》1982,29(2):85-88
A sensitive and selective spectrophotometric method for silver has been established by reacting silver(I) with 2-(3,5-dibromo-2-pyridylazo)-5-diethylaminophenol (3,5-diBr-PADAP) in the presence of an anionic surfactant, sodium lauryl sulphate. The molar absorptivity is 7.7 x 10(4) l.mole(-1).cm(-1) at 570nm. The molar ratio of silver to 3,5-diBr-PADAP is 1:2. Beer's law is obeyed from 0.1 to 1 ppm of silver. With EDTA as masking agent, common ions do not interfere. The method has been applied to the determination of silver in waste water.  相似文献   

5.
The transesterification of methyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoate with tetrakis(hydroxymethyl)methane depends on the equilibrium constants of the reversible reactions; for the final step, the equilibrium constant is K ? 1. The molecular geometries and the enthalpies and entropies of the equilibrium reactions were calculated by the semiempirical PM6 quantum chemical method. The thermodynamic equilibrium constants of the reversible reactions were calculated by the Boltzmann equation from the Gibbs energies G f . For tris-[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoyloxymethyl](hydroxymethyl)methane, the dipole moment is μ = 0.97 D and the energy of the O-H homolysis is D OH = 347.3 kJ mol?1. For tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoyloxymethyl]methane, μ is 5.6 D and D OH is 321 kJ mol?1. The geometry of the structure affects the H-O homolysis energy and the chain termination coefficient under the conditions of inhibited cumene oxidation.  相似文献   

6.
A few pyrazole-functionalized imidazolium salts have been prepared via the reactions of N-alkylimidazole and 3,5-bis(chloromethyl)pyrazole or 2-(1-(2-chloroethyl)-5-methyl-1H-pyrazol-3-yl)-6-(5-methyl-1-vinyl-1H-pyrazol-3-yl) pyridine. Reactions of these imidazolium salts with Ag2O led to the successful isolation of tetranuclear [Ag4(L)2](X)2 (X = PF6 or BF4; H3L1 = 3,5-bis(N-benzylimidazoliumyl)pyrazole, H3L2 = 3,5-bis(N-(2,4,6-trimethylphenyl)imidazoliumyl)pyrazole, H3L3 = imidazolium cyclophane from the condensation of 3,5-bis(chloromethyl)pyrazole and 1,4-bis(imidazolyl)butane) and trinuclear silver clusters supported by N-heterocyclic carbene ligands in high yields. The molecular structures of these silver complexes have been confirmed by 1H, 13C NMR, ESI-MS spectroscopy, and X-ray diffraction analyses. The tetranuclear complexes [Ag4(L1)2](PF6)2 (1) and [Ag4(L2)2](BF4)2 (2) consist of a pair of Ag-Ag contacts (ca. 3.11 Å) showing weak silver-silver interaction. [Ag4(L3)2](PF6)2 (3) has a square planar Ag4 core sandwiched by two NHC cyclophanes with Ag-Ag distances of 3.22 Å. All the silver atoms in 1-3 are located in the same linear C-Ag-N coordination environment. [Ag3(L4)2] (PF6)3 (HL4 = 2-(1-(2-methylimidazoliumylethyl)-5-methyl-1H-pyrazol-3-yl)-6-(5-methyl-1-vinyl-1H-pyrazol-3-yl) pyridine) (4) is a trinuclear complex in which the three silver are bridged by two L4 molecules, and the Ag3 units form one-dimensional chain via Ag-π interaction. The luminescence properties of the imidazolium salts and their silver complexes were also studied.  相似文献   

7.
The activation energy parameters for the reaction of PdX (X=Cl?, Br?) in aqueous halide acid solution with thiourea (tu) and selenourea (seu) have been determined. High rates of reaction parallel low enthalpies and appreciable negative entropy of activation. The rate law in each case simplifies to kobs=k[L] where L=tu or seu, and only ligand-dependent rate constants are observed at 25°C. The ligand-dependent rate constants for the first identifiable step in the PdCl + X system is (9.1±0.1) × 103 M?1 sec?1 and (4.5±0.1) × 104 M?1 sec?1 for X=tu and seu, respectively, while for the PdBr + X system it is (2.0±0.1) × 104 M?1 sec?1 and (9.0±0.1) × 104 M?1 sec?1 for X=tu and seu, respectively.  相似文献   

8.
The voltammetric behavior of two genotoxic nitro compounds (4‐nitrophenol and 5‐nitrobenzimidazole) has been investigated using direct current voltammetry (DCV) and differential pulse voltammetry (DPV) at a polished silver solid amalgam electrode (p‐AgSAE), a mercury meniscus modified silver solid amalgam electrode (m‐AgSAE), and a mercury film modified silver solid amalgam electrode (MF‐AgSAE). The optimum conditions have been evaluated for their determination in Britton‐Robinson buffer solutions. The limit of quantification (LQ) for 5‐nitrobenzimidazole at p‐AgSAE was 0.77 µmol L?1 (DCV) and 0.47 µmol L?1 (DPV), at m‐AgSAE it was 0.32 µmol L?1 (DCV) and 0.16 µmol L?1 (DPV), and at MF‐AgSAE it was 0.97 µmol L?1 (DCV) and 0.70 µmol L?1 (DPV). For 4‐nitrophenol at p‐AgSAE, LQ was 0.37 µmol L?1 (DCV) and 0.32 µmol L?1 (DPV), at m‐AgSAE it was 0.14 µmol L?1 (DCV) and 0.1 µmol L?1 (DPV), and at MF‐AgSAE, it was 0.87 µmol L?1 (DCV) and 0.37 µmol L?1 (DPV). Thorough comparative studies have shown that m‐AgSAE is the best sensor for voltammetric determination of the two model genotoxic compounds because it gives the lowest LQ, is easier to prepare, and its surface can be easily renewed both chemically (by new amalgamation) and/or electrochemically (by imposition of cleaning pulses). The practical applicability of the newly developed methods was verified on model samples of drinking water.  相似文献   

9.
The kinetics of the oxidation of water with bismuth(V) in presence of silver(I) has been investigated in a mixture of HClO4 (1.0 mol dm?3) and HF (1.5 mol dm?3). The reaction is second order, viz., first order with respect to bismuth(V) and silver(I), each, and the second order rate constant is (6.6 ± 0.7) × 10?3 dm3 mol?1 s?1. However, rate is independent of hydrogen ion concentration. A comparative analysis of these results with the results obtained for pdp, pds, and Ce(IV), reactions with silver(I) has also been made to correlate the rate constants and the redox-potentials of the oxidant couples.  相似文献   

10.
A direct method for the determination of silver in mercury is described. The sample of mercury is introduced into the container of the hanging mercury drop electrode and the anodic voltammograms are recorded in a 0.1 M lithium perchlorate solution in acetonitrile. The anodic peak of silver obtained under these conditions is well separated from the mercury dissolution current. The peak height is proportional to silver concentration over the wide range 2 × 10?6 mol dm?3 (1.6 × 10?6%) to at least 2.0 × 10?2 mol dm?3. No prior separation is needed; the procedure requires less than 20 min. The diffusion coefficient of silver in mercury was determined at several temperatures. It was found that silver in mercury does not form intermetallic compounds with copper, lead, thallium, cadmium, tin and bismuth.  相似文献   

11.
A column, solid phase extraction (SPE), preconcentration method was developed for determination of silver by using alumina coated with 1-((5-nitrofuran-2-yl)methylene)thiosemicarbazide and determination by flame atomic absorption spectrometry. The separation/preconcentration conditions for the quantitative recovery were investigated. At pH 2, the maximum sorption capacity of Ag+ was 7.5?mg?g?1. The linearity was maintained in the concentration range of 0.02–11.0?µg?mL?1 in the final solution or 0.14–1.10?×?104?ng?mL?1 in the original solution for silver. The preconcentration factor of 140 and relative standard deviation of ±1.4% was obtained, under optimum conditions. The limit of detection (LOD) was calculated as 0.112?ng?mL?1, based on 3σbl/m (n?=?8) in the original solutions. The proposed method was successfully applied to the determination trace amounts of silver in the environmental samples such as tea, rice and wheat flour, mint, and real water samples.  相似文献   

12.
The rate of the fastest ene reaction between 4-phenyl-1,2,4-triazoline-3,5-dione (1) and 2,3-dimethyl-2-butene (2) is studied by means of stopped flow in solutions of benzene (k 2 = 55.6 ± 0.5 and 90.5 ± 1.3 L mol?1 s?1 at 23.3 and 40°C) and 1,2-dichloroethane (335 ± 9 L mol?1 s?1 at 23.5°C). The enthalpy of reaction (?139.2 ± 0.6 kJ/mol in toluene and ?150.2 ± 1.4 kJ/mol in 1,2-dichloroethane) and the enthalpy (20.0 ± 0.5 kJ/mol) and entropy (144 ± 2 J mol?1 K?1) of activation are determined. A clear correlation is observed between the reaction rate and ionization potential in a series of ene reactions of 4-phenyl-1,2,4-tri-azoline-3,5-dione with acyclic alkenes.  相似文献   

13.
The complex 2,(3)‐tetrabromo‐3,(2)‐tetra[(3,5‐di‐tert‐butyl)phenyloxy]‐naphthalocyaninato lead [Br4(tBu2C6H3O)4NcPb, 1 ] has been prepared and its optical limiting properties for ns light pulses have been measured. Complex 1 behaves as a reverse saturable absorber within the spectral range 440–720 nm with a limiting threshold of 0.1 J cm?2 at 532 nm. The lifetime of the absorbing triplet excited state has been evaluated as 3.8×10?7 s and the quantum yield of triplet formation has been measured as 0.07 in toluene. The nonlinear optical transmission properties of complex 1 have also been determined in Plexiglas [naphthalocyanine content: 5.0×10?4 M (0.1 % by weight)]. A reversible nonlinear absorption was again observed for a fluence above 0.4 J cm?2, but through different excited‐state dynamics. This may be rationalized in terms of aggregation of the molecule in the polymer matrix.  相似文献   

14.
《Analytical letters》2012,45(14):2214-2231
Abstract

A new simple and sensitive method has been proposed for rapid determination of trace levels of silver in environmental water samples, using dispersive liquid–liquid microextraction (DLLME) prior to its microsample introduction-flame atomic absorption spectrometry. Under the optimum conditions, the linear range was 0.1–7 µg L?1 and limit of detection was 0.018 µg L?1. The relative standard deviation for 0.50 and 5.00 µg L?1 of silver in water sample was 4.0 and 1.7%, respectively. The relative recoveries of silver from tap, well, river, and seawater samples at spiking levels of 1.00 and 5.00 µg L?1 were in the range of 86.4–98.6%.  相似文献   

15.
The solubility and solubility product of silver permanganate in water have been determined at the temperatures ranging from 15 to 35°C over 5°C intervals in the presence of an added electrolyte, sodium perchlorate. The solubility of silver permanganate ranges from 0.966 x 10?5 mol 1?1 at 15°C to 1.420x10?5 moll?1 at 35°C and the corresponding solubility product 0.933 x 10?10 mol2 1?2 at 15°C to 2.017 x 10?10 mol2 1?2 at 35°C. The standard potentials of the Ag(s)/AgMnO4(s)/ MnO?4 electrode have been calculated at these temperatures. The mean activity coefficients of silver permanganate at various rounded molarities of sodium perchlorate solutions, and the standard thermodynamic quantities for the process AgMnO4(s)→Ag+ (aq)+MnO?4(aq) have been calculated at these temperatures.  相似文献   

16.
Galvanostatic studies with low current density in 0.1 N KNO3 medium reveal that reduction of oxygen at silver electrode is totally irreversible and in the range of oxygen concentration studied, 2.2-306.3×10?9 mole/cm3, the E-log [02] plot consists of two straight lines, one has a slope of 0.12 volts/decade (C>1 ppm up to air-saturated) and the other, 0.72 volts/decade (0.1<C<0.8 ppm). The transfer coefficient, α, the heterogeneous rate constants, kofh and kogh were evaluated to be 0.12, 2.8×10?4, 1.6×10?7 for the higher concentration range, and 0.02, 4.4×10?4 for the lower concentration region respectively. A possible analytical method for tenths ppm level of oxygen is suggested.  相似文献   

17.
The excitation and emission spectra and decay times of several MnX2-4 (X = Cl?, Br?, 1?) complexes of various tetraalkylammonium, -phosphonium, and -arsonium salts have been measured for the pure solids at 298°K and 77°K. High luminescence quantum yields (0.3-1.0) reveal that lifetimes fairly accurately reflect radiative decay rates. An impressive correlation exists between the lifetime, τ, of the 4T1 (G) →6 A1 emission and the ligand, X: for X = Cl?, τ = 1.2 - 3,5 x 10?3 sec; X = Br?, τ = 0.35 - 0.43 X 10?3 sec; X =l?, τ = 0.036 – 0.055 X 10?3 sec. We attribute this decreasing lifetime largely to the enhanced spin-orbital coupling associated with the heavier halide. We find that direct population of high energy charge-transfer (CT) states gives smaller emission yields than excitations in the ligand-field (LF) region.  相似文献   

18.
《Analytical letters》2012,45(5):403-413
Abstract

An amperometric method, with potassium iodate as the titrant, for the rapid and precise determination of micro amounts of hydrazine salts is described. Hydrazine dihydrochloride, hydrazine sulfate and hydrazine hydrate could be quantitatively analyzed at the concentration range of 4 × 10?7 -4×10?3 M in the presence of 5 M hydrochloric acid. Hydrazine salts, 2×10?4 -4×10?3 M, were titrated in 5 minutes with a relative error and a relative standard deviation of 0.1%. It was also found that hydrazine dihydrochloride can be precisely determined, without any interference, even in the presence of hydroxylamine which is ten times as much as the former.

The suitable applied potential between the rotating platinum indicator microelectrode and the silver plate-silver chloride reference electrode was + 0.7V.  相似文献   

19.
A silver(I) complex with nitronyl nitroxide, [Ag2(NIT-R)4(NO3)2]?·?CH3OH [NIT-R?=?2-(5-methylimidazol-4-yl)-4,4,5,5-tetramethyl-2-imidazoline-1-oxyl-3-oxide], has been prepared and characterized by magnetic and single-crystal X-ray diffraction studies. In the complex, the silver(I) ion is coordinated with two monodentate nitronyl nitroxide radicals by the nitrogen of the imizadole ring. The silver(I) ion is two-coordinate and forms a dimer through Ag?···?Ag weak metal bonding interactions. The magnetic properties for the title complex have been investigated in the temperature range 2?~?300?K showing ferromagnetic interactions between the coordinated nitronyl nitroxides (J?=?3.64?cm?1) and intermolecular antiferromagnetic interactions.  相似文献   

20.
A carbon paste electrode (CPE) was modified with multi-wall carbon nanotubes and successfully applied to the determination of silver ion by differential pulse anodic stripping voltammetry. Compared to a conventional CPE, a remarkably improved peak current response and sensitivity is observed. The analytical procedure consisted of an open circuit accumulation step for 2?min in ?0.4?V, this followed by an anodic potential scan between +0.2 and?+?0.6?V to obtain the voltammetric peak. The oxidation peak current is proportional to the concentration of silver ion in the range from 1.0?×?10?8 to 1.0?×?10?5?mol?L?1, with a detection limit of 1.8?×?10?9?mol?L?1 after an accumulation time of 120?s. The relative standard deviation for 7 successive determinations of Ag(I) at 0.1???M concentration is 1.99%. The procedure was validated by determining Ag(I) in natural waters.
Figure
Differential pulse voltammogram (DPV) of Ag+ solution at MCPE  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号