首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a trisolvent ultrasonic extraction and HPLC analysis method for the determination of 11 polycyclic aromatic hydrocarbons in air particulate collected on an air filter by a commercial high volume air sampler. A reverse phase column, Vydac 201 TP, and a gradient mobile phase, acetonitrile/water, were used. The 11 PAHs, fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a, h]anthracene, benzo[ghi]perylene, indeno[1,2,3-cd]pyrene, and coronene were completely resolved under experimental conditions. All the PAHs except coronene were monitored by fluorescence with λex=270 nm, λem>389 nm. Coronene was monitored by UV with λ=300 nm. The methodology was evaluated by spiking SRM 1649 with a PAH standard and then going through different extraction procedures and analyzing the PAH concentrations without clean-up. An external standard method was used for quantitation. The recovery yields for fluoranthene, benz[a]anthracene, benzo[a]pyrene, benzo[ghi]perylene and indeno[l,2,3-cd]pyrene were above 90%. The detection limits of PAH with fluorescence at λex=270 nm, λem>389 nm ranged from 5.7 pg to 69.5 pg.  相似文献   

2.
This paper presents the characterization of polycyclic aromatic hydrocarbons (PAHs) in solid-surface fluorescence as the first step for obtaining new optical sensors for PAHs screening. The fluorescence properties of the EPA-PAHs (naphthalene, acenaphthene, acenaphthylene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, chrysene, benzo[a]anthracene, benzo[k]fluoranthene, benzo[b]fluoranthene, benzo[a]pyrene, indeno [1,2,3-cd]pyrene, benzo[g,h,i]perylene and dibenzo[a,h]anthracene) on five types of solid-surfaces were evaluated. The experimental variables (pH and percentage of organic solvent in samples) were studied, obtaining different possibilities for making individual sensors for some of these PAHs and the best conditions for developing sensors for PAH screening were also studied.  相似文献   

3.
Based on a standard test method for purity by differential scanning calorimetry (DSC), ASTM E 928, a purity determination method for highly pure polycyclic aromatic hydrocarbons (PAHs) has been developed and validated. The robustness of the developed method was investigated by determining, under varying measurement conditions, the purity of two PAH certified reference materials (CRMs), benzo[c]phenanthrene and dibenzo[a,h]anthracene. The repeatability and intermediate precision of the developed method was determined by analysing the purity of benzo[c]phenanthrene and dibenzo[a,h]anthracene and PAH candidate CRMs indeno[1,2,3-c,d]pyrene, 6-methylchrysene and benzo[a]pyrene. The trueness of the method was studied using the same (candidate) CRMs and a series of 42 other PAH CRMs. For each of the five (candidate) CRMs, a full measurement uncertainty budget was developed. Also for PAH materials for which the DSC purity determination method has not been explicitly validated, the relative expanded measurement uncertainty was estimated.  相似文献   

4.
A method capable of determining 13 PAHs (acenaphthene, anthracene, benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, chrysene, dibenzo[ah]anthracene, fluoranthene, fluorene, indene[1,2,3-cd]pyrene, phenanthrene and pyrene) in a mixture of 16 EPA PAHs by second derivative synchronous spectrofluorometry in the constant wavelength mode was developed. It has not been possible to determine the following PAHs in the mixture: acenaphthylene, benzo[ghi]perylene and naphthalene. The approach studied allows the sensitive, rapid and inexpensive identification and quantitation of 13 PAHs in a solution of hexane. The detection limits are <1 microg L(-1) (except for chrysene and phenanthrene).  相似文献   

5.
The most suitable wavelength intervals were selected for the determination of 4 polycyclic aromatic hydrocarbons (PAHs; benzo[g,h,i]perylene, dibenzo[a,h]anthracene, pyrene, and triphenylene) in very complex mixtures of 11 PAHs: anthracene, benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[g,h,i]perylene, benzo[k]fluoranthene, chrysene, dibenz[a,h]anthracene, phenanthrene, pyrene, and triphenylene. The multiple linear regression algorithm was applied to measurements made in several wavelength intervals previously selected on the basis of sensitivity and minimum number of interfering compounds. Of the different models obtained, those displaying minimum error propagation in the analytical result were selected. By applying the models proposed in this study, we precisely and accurately determined benzo[g,h,i]perylene, dibenz[a,h]anthracene, pyrene, and triphenylene in complex mixtures--a feat that could not be achieved by the use of constant-wavelength spectrofluorimetry in combination with second-derivative techniques.  相似文献   

6.
研究了9个多环芳烃混合样品的超临界流体色谱分析条件,并与毛细管气相色谱法做了比较。超临界流体色谱的条件是:柱温110℃;程序升压9.0MPa(5min)1.4MPa/min28.0 MPa。各组分保留时间的相对标准偏差为 1.4%~3.0%,定量分析的相对误差为1.4%~6.0%,比毛细管气相色谱法具有明显的优越性。试验了焦炉降尘样品,发现该样品主要由双环和三环的多环芳烃类物质组成。其中萘含量约占80%。  相似文献   

7.
The formation of polycyclic aromatic hydrocarbons (PAHs) during pyrolysis process of phenylalanine had been studied. Ten PAHs, including fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene, chrysene, benzo[k]fluoranthene, benzo[e]pyrene, and benzo[a]pyrene were analyzed by gas chromatography-mass spectrometry using selective ion monitoring mode. This technique offers the capability to analyze trace amounts of PAHs in phenylalanine pyrolyzates. The pyrolysis was carried out in a micro-furnace with quartz furnace liner. The injection was conducted with glass pelletizer syringe to avoid metal contamination. Qualitative results were obtained at 900 degrees C and quantitative analysis of 10 PAHs was done for 700 and 900 degrees C.  相似文献   

8.
Methodology was developed for the determination of eight polycyclic aromatic hydrocarbons (PAH) in five food categories including meat/fish, dried dairy products, cereals, leafy vegetables and vegetable/marine oils. The eight PAH were fluoranthene, benzo[a]anthracene, benzo[k]fluoranthene, benzo[b]fluoranthene, benzo[a]pyrene, 7,12-dimethylbenzo[a]anthracene, dibenzo[ah]anthracene and dibenzo[ai]pyrene. Samples were digested with alcoholic KOH followed by partitioning into solvents such as cyclohexane or isooctane. Lipids and other interferences were removed by solvent partitioning with dimethylformamide or dimethylsulfoxide/water. Additional cleanup involving column chromatography on silica gel, Florisil or Sephadex LH-20 was employed as required. Reversed-phase chromatography with gradient elution and fluorescence detection was employed for the determinations. Confirmation was carried out by GC-MS/SIM. Detection limits ranged from 2-90 ng/kg depending on the PAH and food analyzed. Results of a small survey indicated that the meat/fish category had the highest levels (low microgram/kg, on average) of the foods studied.  相似文献   

9.
For measurement of biomarkers from polycyclic aromatic hydrocarbon (PAH) exposure, an analytical method is described quantifying hydroxylated PAH (OH-PAH) in urine samples. This method determined monohydroxy metabolites of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, chrysene, benzo[c]phenanthrene, and benz[a]anthracene. The sample preparation consisted of enzymatic hydrolysis, solid-phase extraction and derivatization with a silylating reagent. Five carbon-13 labeled standards were used for isotope dilution. Analytes were separated by gas chromatography (GC) and quantified with high-resolution mass spectrometry (HRMS). This method produced good recoveries (41-70%), linearity, and specificity. Data were corrected for blank levels from the naphthalene, fluorene, and phenanthrene metabolites. Method detection limits ranged from 2 ng L(-1) for 1-hydroxypyrene to 43.5 ng L(-1) for 1-hydroxynaphthalene. Using quality control charts from two urine pools, the method can be readily applied to biomonitoring PAH exposure.  相似文献   

10.
We have evaluated both electron ionization (EI) and negative-ion chemical ionization (NICI) methods for the analysis of trimethylsilyl derivatives of a series of polycyclic aromatic hydrocarbon (PAH) alcohols including styrene diol, benzo[e]pyrene diol and tetrols, cyclopenta[c,d]pyrene diols, benzo[a]pyrene-4,5-diols, chrysene tetrols, benz[a]anthracene tetrols I and II, and syn- and anti-benzo[a]pyrene tetrols. NICI is the more sensitive method for all compounds except styrene diol. Detection limits are compound-dependent and range from 1 fmol for cyclopenta[c,d]pyrene diol to 1 pmol for benzo[e]pyrene diol. The EI detection limit for styrene diol is 60 fmol. PAH alcohols related to the compounds listed above were observed following hydrolysis of hemoglobin which had been reacted with PAH epoxides in vitro. Benzo[a]pyrene tetrols and a chrysene tetrol were observed following hydrolysis of hemoglobin isolated from human smokers' blood. Hydrolysis of styrene oxide treated hemoglobin in 18O-labeled water revealed at least two mechanisms of ester hydrolysis, including the BAL 1 pathway.  相似文献   

11.
The occurrence of polycyclic aromatic hydrocarbons (PAHs) in nine edible oils of three categories of oil samples, such as soy bean oil, mustard oil and coconut oil, has been studied to determine the contamination degree of this type of oil samples. Eight major carcinogenic polycyclic aromatic hydrocarbons (PAHs), such as naphthalene, anthracene, phenanthrene, fluorene, pyrene, crysene, benzo(a)pyrene and benzo(a)anthracene, were identified and quantified in the extract of edible oils collected from Bangladeshi Markets by gas chromatography and mass spectroscopy. All of the carcinogenic PAHs are not present in the edible oils. A few of the carcinogenic PAHs are present in the oils but it is within the permissible limit. The results for the recoveries of naphthalene, fluorene, phenanthrene, anthracene, pyrene, crysene, benzo(a)anthracene and benzo(a)pyrene were in the range of 56–84%. The limit of detection (LOD) of the GC–MS method, established at signals three times that of the noise for naphthalene, fluorene, phenanthrene, anthracene, pyrene, crysene, benzo(a)anthracene and benzo(a)pyrene, was 2.0–2.5 ng, respectively.  相似文献   

12.
In the present study, the solid–liquid extraction with low temperature purification was validated for the determination of 16 polycyclic aromatic hydrocarbons from sewage sludge by gas chromatography-mass spectrometry. Recoveries ranged 70–114% for naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene and chrysene, while the compounds benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene, dibenzo[a,h]anthracene and benzo[g,h,i]perylene showed recoveries of between 40 and 70%. The relative standard deviation was less than 13% for all of the compounds. Negative matrix effect was observed on the 10 compounds with less retention time in the chromatographic analysis and positive matrix effect noticed on the others. The limits of quantification were from 2 to 20 μg kg?1, about 30 times less than the maximum residue limit allowed in sludge by the European Union. The validated method produced quantification of 11 PAHs in one sludge sample at concentrations ranging 20–2000 μg kg?1.  相似文献   

13.
With the emergence of highly sensitive analytical techniques, the microanalysis of natural-matrix materials employing smaller sample sizes is increasingly more common, which subsequently warrants a homogeneity assessment for the individual components at the appropriate sampling level. Pressurized liquid extraction (PLE) in combination with gas chromatography/mass spectrometry (GC/MS) has been used to determine the sampling constants and evaluate the relative homogeneity of trace levels of polycyclic aromatic hydrocarbons (PAHs) for two previously certified particulate standard reference materials, SRM 1649a Urban Dust and SRM 1650b Diesel Particulate Matter, in the milligram sampling range. Fluoranthene, pyrene, benz[a]anthracene and benzo[e]pyrene within SRM 1650b Diesel Particulate Matter were deemed to be homogeneous, based on relatively small sampling constants (K S<100 mg), whereas the larger sampling constants (K S>100 mg) obtained for all PAHs in SRM 1649a Urban Dust suggest more material heterogeneity. The material heterogeneity of ten individual PAHs (phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, benzo[k]fluoranthene, benzo[e]pyrene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene and benzo[ghi]perylene) was also described via nonlinear relationships (i.e., power law) between subsampling error S s (%) and sample mass, which are used to predict analyte-specific minimum sample masses that result in a specific level of analytical uncertainty. Electronic supplementary material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

14.
The development and certification of a coal fly ash certified reference material (CRM) for polycyclic aromatic hydrocarbons (PAH) is described; this is the first natural matrix CRM for organic environmental analysis in China. The homogeneity and stability of this material have been tested by HPLC. The concentrations of several PAH were determined by use of two independent, different methods--solvent extraction-HPLC analysis with UV detection coupled with fluorescence detection (FLD) and solvent extraction, isolation with a silica column, and GC analysis with flame ionization detection (FID). Five certified values were determined: phenanthrene 7.1 +/- 2.6 microg g(-1), anthracene 2.0 +/- 0.8 microg g(-1), fluoranthene 7.4 +/- 1.9 microg g(-1), pyrene 7 +/- 2 microg g(-1), and benzo[a]pyrene 1.3 +/- 0.3 microg g(-1). Reference values for several other PAH are also suggested.  相似文献   

15.
The total and bioaccessible concentration of 16 polycyclic aromatic hydrocarbons (PAHs) in soil from a former industrial site was investigated. Typical total concentrations across the sampling sites ranged from 1.5 mg kg−1 for acenaphthylene up to 243 mg kg−1 for fluoranthene. The oral bioaccessibility of PAHs in soil was assessed using an in vitro gastrointestinal extraction (Fed Organic Estimation human Simulation Test, FOREhST method). The oral bioaccessibility data indicated that fluorene, phenanthrene, chrysene, indeno(1,2,3-cd)pyrene and dibenzo(a,h)anthracene had the highest % bioaccessible fraction (based on their upper 75th percentile values being >60%) while the other PAHs had lower % bioaccessible fractions (means ranging between 35 and 59%). Significantly lower bioaccessibilities were determined for naphthalene. With respect to method validation and inter-laboratory comparison, the total and bioaccessible concentrations of benzo(a)anthracene, benzo(b)anthracene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene and dibenzo(a,h)anthracene was compared to published data derived using the same samples. The total PAH concentrations at the site were compared with generic assessment criteria (GAC) using the residential land use scenario (with plant uptake at 6% soil organic matter). Concentrations of 7 of the PAHs investigated within the soils could lead to an unacceptable risk to human health at this site.  相似文献   

16.
The synthesis of the C(8)-aryl adducts of adenine and guanine formed by reaction of the radical cation metabolites of carcinogenic polycyclic aromatic hydrocarbons (PAHs), such as benzo[a]pyrene (BP) and dibenzo[def,p]chrysene (DBC), with DNA is reported. The synthetic approach involves in the key step direct reaction of a PAH aldehyde with a di- or triamine precursor of a purine. The method is operationally simple, affords good yields of adducts, and is broad in its scope. The C(8)-aryl adducts of adenine and guanine derived from BP (6-BP-8-Ade and 6-BP-8-Gua) and DBC (10-DBC-8-Ade and 10-DBC-8-Gua) were synthesized in good yields by this method. Analogous C(8)-aryl adenine and guanine derivatives of other PAHs (anthracene, benz[a]anthracene, and chrysene) were also readily prepared via this approach. This method of synthesis is superior to the only method that is currently available. It entails direct reaction of short-lived PAH radical cations (generated electrochemically or chemically) with 2'-deoxyribonucleosides or the corresponding purine bases. It provides the adducts in low yields accompanied by complex mixtures of secondary products. An alternative synthesis that involves Pd-catalyzed Suzuki-Miyaura coupling of arylboronic acids with 8-bromopurine nucleosides was also investigated. Although the C(8)-purine adducts of PAHs, such as naphthalene, phenanthrene, pyrene, and chrysene, could be prepared by this method, analogous adducts of carcinogenic PAHs and other structurally related PAHs, e.g., anthracene, benz[a]anthracene, benzo[a]pyrene, and dibenzo[def,p]chrysene, could not be obtained. This difference was shown to be a consequence of the facility of competing hydrolytic deboronation of the corresponding arylboronic acids.  相似文献   

17.
A fast and simple preparation procedure based on the matrix solid-phase dispersion (MSPD) technique is proposed for the first time for the isolation of 16 polycyclic aromatic hydrocarbons (PAHs) from soil samples. Naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[e]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, benzo[g,h,i]perylene, and indeno[1,2,3-c,d]pyrene were considered in the study. Extraction and clean-up of samples were carried out in a single step. The main parameters that affect extraction yield, such as dispersant, type and amount of additives, clean-up co-sorbent and extractive solvent were evaluated and optimized. The addition of an alkali solution in MSPD was required to provide quantitative recoveries. Analytical determinations were carried out by high performance liquid chromatography (HPLC) with fluorescence detection. Quantification limits (between 0.01 and 0.6 ng g(-1) dry mass) were well below the regulatory limits for all the compounds considered. The extraction yields for the different compounds obtained by MSPD were compared with the yields obtained by microwave-assisted extraction (MAE). To test the accuracy of the MSPD technique, the optimized methodology was applied to the analysis of standard reference material BCR-524 (contaminated industrial soil), with excellent results.  相似文献   

18.
This paper presents the phosphorescence characterization of polycyclic aromatic hydrocarbons (PAHs) on solid-surface for obtaining new flow-through phosphorescence optosensors for PAHs-based on-line, immobilized onto a non-ionic resin solid support coupled to a continuous flow system and the applications for the selective determination of benzo(a)pyrene (BaP). The phosphorescent characterization of 15 PAHs, described as major pollutants by the Environmental Protection Agency (EPA) (naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, chrysene, benzo(a)anthracene, benzo(k)fluoranthene, benzo(b)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, benzo(g,h,i)perylene and dibenzo(a,h)anthracene) has been carried out. The experimental variables (heavy atom, deoxygenation and organic solvent in samples) for obtaining different possibilities for developing mono and multi-parameter PAH sensors and the conditions for PAH screening have been carefully studied and the experimental conditions to determination of BaP in presence of other PAHs in water samples have been optimized.  相似文献   

19.
The room-temperature phosphorescence of several polyaromatic hydrocarbons (anthracene, coronene, phenanthrene, pyrene, benzo[a]pyrene) and carbazole on paper support has been investigated. Heavy-atom solvents such as silver nitrate and sodium iodide were found to have specific effects in inducing phosphorescence emission from these compounds.  相似文献   

20.
Interactions of phenantrene, anthracene, pyrene, chrysene, and benzo[a]pyrene (polyaromatic hydrocarbons) with model phospholipid membranes were probed using the Langmuir technique. The lipid monolayers were prepared using 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine, 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol, 1,2-dipalmitoyl-sn-glycero-3-phosphoserine, 1,2-myristoyl-sn-glycero-3-phosphoethanolamine, 1,2-dilauroyl-sn-glycero-3-phosphocholine, and cholesterol. Surface pressure and electrical surface potential were measured on mixed phospholipid/PAH monolayers spread on a pure water subphase. The morphology of the mixed monolayers was followed with Brewster angle microscopy. Polarization-modulation infrared reflection-absorption spectroscopy spectra obtained on DPPE/benzo[a]pyrene showed that the latter interacts with the carbonyl groups of the phospholipid. On the other hand, the activity of phospholipase A2 toward DLPC used as a probe to locate benzo[a]pyrene in the monolayers indicates that the polyaromatic hydrocarbons are not accessible to the enzyme. The results obtained show that all PAHs studied affect the properties of the pure lipid, albeit in different ways. The most notable effects, namely, film fluidization and morphology changes, were observed with benzo[a]pyrene. In contrast, the complexity of mixed lipid monolayers makes the effect of PAHs difficult to detect. It can be assumed that the differences observed between PAHs in monolayers correlate with their toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号